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Convergent vocal representations in parrot 
and human forebrain motor networks

Zetian Yang1,2 & Michael A. Long1,2 ✉

Cortical networks for the production of spoken language in humans are organized by 
phonetic features1,2, such as articulatory parameters3,4 and vocal pitch5,6. Previous 
research has failed to find an equivalent forebrain representation in other species7–11. 
To investigate whether this functional organization is unique to humans, here we 
performed population recordings in the vocal production circuitry of the budgerigar 
(Melopsittacus undulatus), a small parrot that can generate flexible vocal output12–15, 
including mimicked speech sounds16. Using high-density silicon probes17, we measured 
the song-related activity of a forebrain region, the central nucleus of the anterior 
arcopallium (AAC), which directly projects to brainstem phonatory motor neurons18–20. 
We found that AAC neurons form a functional vocal motor map that reflects the 
spectral properties of ongoing vocalizations. We did not observe this organizing 
principle in the corresponding forebrain circuitry of the zebra finch, a songbird 
capable of more limited vocal learning21. We further demonstrated that the AAC 
represents the production of distinct vocal features (for example, harmonic structure 
and broadband energy). Furthermore, we discovered an orderly representation  
of vocal pitch at the population level, with single neurons systematically selective  
for different frequency values. Taken together, we have uncovered a functional 
representation in a vertebrate brain that displays unprecedented commonalities with 
speech-related motor cortices in humans. This work therefore establishes the parrot as 
an important animal model for investigating speech motor control and for developing 
therapeutic solutions for addressing a range of communication disorders22,23.

Human speech requires exquisite control over vocal production, show-
ing a high degree of flexibility while also maintaining the capacity to 
reliably produce words (Fig. 1a,b). Speech production engages several 
cortical regions2,23–25, the activity of which often reflects the structure 
of spoken utterances2,6,26. Although humans are the only species capa-
ble of language, a wide range of vocal abilities have been observed 
in other animals21. For instance, the zebra finch, a species capable of 
vocal imitation, can learn to produce a short (approximately 0.5–1.0 s), 
stereotyped song composed of ‘syllables’ as well as a small set of calls27 
(Fig. 1c,d) whereas parrots, such as the budgerigar, can mimic conspe-
cific and heterospecific sounds throughout life15,16,28. Budgerigar vocali-
zations comprise sequences of variable vocal elements called warble 
songs12,29 and span a richer acoustic space (Fig. 1e,f and Extended Data 
Fig. 1). Because of the high degree of flexible control inherent in both 
the budgerigar song and human speech, we hypothesize that shared 
neural representations may underlie these vocalizations.

To investigate the mechanisms of vocal production in the budgerigar, 
we recorded the activity of a key forebrain structure, the AAC. Like the 
human speech motor cortex and a well-characterized vocal motor 
nucleus in the zebra finch, the robust nucleus of arcopallium (RA)7,30,31 
(Extended Data Fig. 2a), the AAC densely innervates vocal motor neu-
rons18–20 (Fig. 1g). Lesions32 or electrical stimulation33 in the AAC can 

influence vocal production, indicating a primary role in motor control. 
To test this idea, we recorded AAC activity (Fig. 1h and Extended Data 
Fig. 2b–e) with a chronically implanted high-density silicon probe17 
while birds produced flexible warble elements (n = 1,403, 522, 1,381 and 
1,645 for each bird) and stereotyped calls (n = 40, 61, 27 and 43 for each 
bird; Fig. 1e). During vocalization (including both calls and warbles), 
AAC neurons (n = 220 from 4 birds; n = 49, 81, 43 and 47 for each bird) 
strongly increased their firing rates (baseline: 47.5 ± 16.0 Hz; vocal: 
95.5 ± 46.1 Hz; two-sided Wilcoxon signed-rank test, P = 2.7 × 10−35) 
(Fig. 1h–j and Extended Data Fig. 3a). Importantly, changes in AAC activ-
ity often preceded the onsets and offsets of vocal elements (Extended 
Data Fig. 3b,c) indicating a premotor function. Therefore, AAC activity 
corresponded to the production of vocalizations.

To confirm that the observed responses in the AAC are specific for 
vocal motor production rather than auditory processing, we performed 
playback experiments with two birds (Methods). We found that AAC 
firing rates were significantly higher during vocalization than playback 
(vocal: 108.3 ± 44.8 Hz; playback: 55.3 ± 16.4 Hz; Extended Data Fig. 3d,e; 
two-sided Wilcoxon signed-rank test, P < 10−7 for both birds). Compared 
with activity during a 10 s non-singing period (baseline: 52.0 ± 15.5 Hz), 
playback elicited a small but statistically significant increase in firing 
rate (Δfiring rate: 3.2 ± 3.8 Hz; two-sided Wilcoxon signed-rank test, 
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Fig. 1 | Comparative vocal behaviour and underlying neural activity.  
a, Example sonograms of a single human speaker excerpted from a 10-min 
session of the Switchboard corpus (Methods). Scale bar, 0.2 s. b, t-distributed 
stochastic neighbour embedding (t-SNE) representation of spectrograms of 
the spoken words from the session used in a, with all the instances of the word 
‘invaded’ highlighted in cyan. c,d, Example sonograms (c) and t-SNE (d) of 
vocalizations by a zebra finch (ZF). Scale bar, 0.1 s. Syll., syllable. e,f, Example 
sonograms (e) and t-SNE (f) of vocalizations by a budgerigar (BG). Scale bar, 0.1 s. 
g, Vocal production pathway in the three species, highlighting direct projections 
from forebrain to brainstem vocal motor neurons. nXIIts, tracheosyringeal 
hypoglossal nucleus. h, Population recording in budgerigar AAC highlighting 
spiking activity during example vocalizations and non-vocal baseline periods. 
Scale bars, 100 ms. i,j, Mean firing rates of AAC neurons during vocalization 

versus during baseline for an example bird (i; BG3) and for data pooled from all 
budgerigars ( j, n = 4 birds). Each circle represents a neuron. k,l, Bursting ratios 
of AAC neurons for an example bird (k; BG3) and for data pooled from all 
budgerigars (l, n = 4 birds). Each circle represents a neuron. m–q, Population 
recordings (m) from RA and associated quantification from a single zebra finch 
(n,p; ZF1) and from pooled data (o,q, n = 7 birds). Scale bars, 100 ms. Sonogram 
frequency range: 0.3–4 kHz in a and 0.3–7 kHz in other panels. In all panels, 
P values are from two-sided Wilcoxon signed-rank tests. See Extended Data 
Table 1 for exact P values, sample sizes and related information for statistical 
tests. Illustrations of the zebra finch in parts c and m are reproduced from  
ref. 60, Elsevier. Schematics of the brain in parts h and m are adapted from  
ref. 61, Springer Nature Limited.
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P < 10−4 for both birds; Extended Data Fig. 3d,f). During vocalization, 
many AAC neurons showed a strong increase in bursting activity as 
indicated by a ‘bursting ratio’ or the proportion of time a neuron spent 
bursting (baseline: 0.01 ± 0.01; vocal: 0.14 ± 0.09; two-sided Wilcoxon 
signed-rank test, P = 7.7 × 10−38; Fig. 1h,k,l and Extended Data Fig. 3g,h). 
We then compared our results with song-related activity in RA (n = 502 
neurons from 7 birds; n = 67, 80, 116, 104, 48, 32 and 55 for each bird). 
Both the RA firing rate (baseline: 30.9 ± 8.8 Hz; vocal: 47.5 ± 19.6 Hz) 
and burst ratio (baseline: 0.005 ± 0.008; vocal: 0.11 ± 0.06; Fig. 1m–q 
and Extended Data Fig. 3i, j) increased during vocalization compared 
with silent baseline periods, albeit with a higher degree of sparseness 
than the AAC (RA: 0.21 ± 0.06; AAC: 0.32 ± 0.11; two-sided Wilcoxon 
rank-sum test, P = 1.45 × 10−37; Methods). These results support the 
notion that the AAC, similar to zebra finch RA7,30,31, is a key vocal motor 
area in the budgerigar forebrain.

Budgerigar AAC reuses neural ensembles
Having established the AAC as a forebrain motor control region, we 
investigated the functional relationship between AAC population activ-
ity and vocal production. Previous research demonstrated that the 
burst timing of neurons in the zebra finch RA is precisely structured 
across song renditions7,31,34,35 and our data are consistent with these 

findings (Fig. 2a). To assess whether AAC activity has a temporally pre-
cise relationship with behaviour, we aligned repeated vocalizations 
(for example, contact calls) and found that spiking was also highly 
stereotyped (Fig. 2b). This reliable motor representation enabled us 
to quantify the degree to which the neural activity could be related to 
the acoustic structure of vocalizations. Previous research has demon-
strated that in zebra finch RA, acoustically similar portions of vocali-
zations were produced by distinct motor commands, establishing a 
‘degenerate’ coding scheme7. Consistent with this previous result, we 
found low neural correlation of RA ensembles across syllables, even in 
cases with a high degree of spectral similarity (Fig. 2c,d and Methods).

We observed a categorically different code in the budgerigar AAC 
(Fig. 2e,f), where the vocal structure instead covaried with underlying 
neural response patterns (Spearman’s ρ = 0.26, P < 10−100), in contrast 
to the motor code observed in zebra finch RA (Spearman’s ρ = 0.02, 
P = 0.08; Fig. 2g–j). Importantly, the relationship between neural and 
spectral correlation in budgerigars could not be explained by the recur-
rence of identical vocal units across different syllables (Methods and 
Extended Data Fig. 4). Our findings reveal a fundamental difference 
between the forebrain control of song in these two species. In the 
zebra finch, RA population activity changes throughout the course 
of the song, such that different configurations are active at different 
moments, representing an evolving population ‘barcode’36,37 (Fig. 2k). 
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Fig. 2 | Different neural coding schemes in zebra finch RA and budgerigar 
AAC. a, Instantaneous firing rates (z-scored) of a population of RA neurons to 
an example song syllable (left) and spiking activity of a group of selected 
neurons across multiple renditions of that same syllable (right). FR, firing rate. 
Scale bar, 100 ms. b, AAC activity during a single call (left) and associated 
time-aligned activity of representative neurons across trials of that same call 
(right). Scale bar, 100 ms. Coloured triangles in a and b denote neurons shown 
on the right. c, Instantaneous firing rates of zebra finch RA neurons to two 
example syllables. Numbered coloured bars on top denote 20 ms segments 
expanded on the right along with accompanying Pearson correlations of the 
spectrograms (top) and neural activity (bottom) between each segment. Scale 
bar, 50 ms. d, Spectral (top) and neural (bottom) correlation matrices for 
syllables in c. Scale bar, 20 ms. e, Data from budgerigar AAC during production 
of two example syllables, with three indicated segments further analysed on 

the right. Scale bar, 50 ms. f, Spectral (top) and neural (bottom) correlation 
matrices for syllables in e. g–j, Correlation between spectral similarity and 
neural similarity matrices for an example zebra finch (g), an example 
budgerigar (i) and accompanying population data (h,j). In each panel, spectral 
and neural matrices were flattened and concatenated across syllable pairs 
before plotting. ρ denotes Spearman’s correlation value. NS, not significant 
(P > 0.05), ***P < 10−100 (two-sided permutation test). See Extended Data Table 1 
for sample sizes and related information for statistical tests. k,l, Neural coding 
of vocal production by RA (k) or the AAC (l) population. Notes on top represent 
acoustic properties of vocalization; filled boxes indicate active neurons during 
vocal production. Neural activity was shifted forward by 12 ms to account for 
vocal motor delay (Methods). a.u., arbitrary unit. Illustration of the zebra finch 
in part a is reproduced from ref. 60, Elsevier.
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By contrast, the AAC population activity in the budgerigar corresponds 
to the acoustic structure of song, with similar neural ensembles ‘reused’ 
to produce vocal elements that have similar spectral features (Fig. 2l).

Mapping of vocal categories in the AAC
In humans, the speech-related sensorimotor cortex is organized accord-
ing to phonetic features2,5,6; speech sounds with shared articulatory 
parameters rely on reused motor commands3,38. Given the correspond-
ence of vocal acoustic structure to neural activity in the budgerigar, 
we examined whether an equivalent feature-based representation is 
also present in populations of AAC neurons. Previous research has 
demonstrated that the budgerigar warble is composed of acoustically 
distinct elements12. For instance, 3 out of 4 budgerigars that we exam-
ined commonly produced distinct low-frequency syllables (n = 64, 49 
and 40 for birds 1, 3 and 4, respectively) with a concentrated spectral 
energy below 700 Hz (Fig. 3a–c and Extended Data Fig. 5a). Moreover, 
warbles were composed of features ranging from ‘consonant-like’ noisy 
sounds with a broadband spectral distribution to ‘vowel-like’ harmonic 
elements that had a clear periodic acoustic structure39 (Fig. 3a–c). To 
quantify these vocal types, we developed a ‘harmonic index’ in which 
these sounds represent two ends of a continuum (Fig. 3b,c and Meth-
ods). From these behavioural analyses, we have defined a set of distinct 
vocal components of the budgerigar repertoire.

We next investigated how these different acoustic categories are 
represented in the AAC. We found example neurons in which firing rates 
seemed to be linked to individual vocal types, including low-frequency 
(green), harmonic (red) and noisy (blue) sounds (Fig. 3d, also see trian-
gles in Fig. 3e). We defined a selectivity index for each category (Meth-
ods and Extended Data Fig. 5b–d) and observed a diverse response 
profile across the AAC population (Extended Data Fig. 5e). To determine 
whether AAC neurons show distinct population response patterns 
associated with each acoustic category, we used principal component 
analysis (PCA) to map the AAC population responses over a window (−30 
to −5 ms with respect to vocalization) into a three-dimensional neural 
state space (Methods and Extended Data Fig. 6a,b). We then labelled 
each neural state (Fig. 3f and Supplementary Video 1) on the basis of the 
vocalization produced (Fig. 3c). If the AAC population encodes acoustic 
categories, we would expect neural activity to form well-separated 
clusters in this neural state space. We found that responses underly-
ing low-frequency vocalizations were distinct from all other neural 
states and responses to noisy and harmonic vocalizations were also 
clearly separated from each other (Fig. 3f and Supplementary Video 1), 
indicating a functional representation of vocal acoustic parameters in 
the budgerigar AAC.

In addition to noisy and harmonic sounds, birds produce vocaliza-
tions that fall between these two categories and have intermediate 
‘harmonic index’ values (Fig. 3c, bottom). We returned to the state 
space representation to examine the neural ensemble activity during 
the production of these ‘mixed’ warble elements. One possibility is 
that such neural responses are heterogeneous and disorganized with 
representations scattered across the neural space. Alternatively, mixed 
neural responses could be localized in a specific region in this represen-
tation. We found that the latter was true: responses to mixed vocaliza-
tions were localized in between the neural representations for noisy and 
harmonic sounds (Fig. 3f and Supplementary Video 1). Moreover, when 
we colour coded each neural state on the basis of its harmonic index, we 
observed a strong relationship between that parameter and the posi-
tion in the state space (Extended Data Fig. 6c). Supporting this notion, 
a linear regression model using neural states as predictors explained a 
substantial proportion of the variance in the harmonic index (R2 = 0.45, 
0.62, 0.51 and 0.52 for each budgerigar; Methods). These results reveal 
that AAC neural responses are organized according to the acoustic 
features of vocalizations, forming an orderly representation of vocal 
elements (that is, ranging from noisy to harmonic).

We further examined whether the organizing principles that we 
uncovered were similar across individuals. When we investigated the 
neural state clusters in our population of four budgerigars that had 
vocal repertoires with both shared and distinct components (Extended 
Data Fig. 7), we uncovered a consistent relationship between AAC neural 
space and the acoustics of produced vocal elements. For each bird, the 
distance of neural states in each category (for example, noisy–noisy) 
is significantly smaller than the distance between neural responses 
across categories (two-sided Wilcoxon rank-sum test, P < 10−100; Fig. 3g 
and Extended Data Fig. 8a). This result is not due to the spike binning 
process, as neurons with shuffled spike times have significantly reduced 
separation of neural states across categories (Methods and Extended 
Data Fig. 8b). Our results also remain consistent after subsampling to 
prevent bin overlap (Methods and Extended Data Fig. 8c,d). A predic-
tion of this neural mapping is that the AAC population travels across the 
state space during vocalization according to the current vocal acoustic 
category, as previously described in human speech-production cir-
cuits2. We found that neural states can shift rapidly in correspondence 
with changes in vocal categories (Extended Data Fig. 8e), consistent 
with the notion that the AAC ensemble dynamically controls vocal 
production.

Representation of vocal pitch in the AAC
The similarity in representation of vocal features across humans and 
budgerigars prompted us to investigate whether additional structure 
exists in the AAC population activity. Human studies have revealed that 
the speech motor cortex encodes vocal pitch5,6 (that is, fundamental 
frequency). Budgerigars40,41 and other parrot species (for example, 
cockatiels42) show excellent control of pitch, a parameter known to be 
related to syringeal tension43. To examine whether pitch is also explic-
itly represented in the AAC, we isolated vocalizations with a strong 
harmonic structure (Fig. 4a and Extended Data Fig. 9a) and estimated 
the fundamental frequency of these vocal elements (Methods and 
Extended Data Fig. 9a). Each bird exhibited an idiosyncratic distribu-
tion of pitches, broadly ranging from 1 to 5 kHz (Fig. 4b and Extended 
Data Fig. 9b). We next re-examined the AAC neural state space and 
found a highly structured representation related to the pitch of the 
produced vocalization (Fig. 4c). In all birds tested, responses were 
organized according to pitch, forming a monotonic gradient in neural 
space (Fig. 4c,d). We analysed this relationship by calculating a ‘neural 
frequency axis’ (Extended Data Fig. 9c) that traverses from low to high 
frequencies (Fig. 4c,d). After projecting neural responses onto this 
axis (Methods), we found that the vocal pitch in each bird seems to 
be linearly distributed along the neural axis, whereas no relationship 
is observed in the shuffled data (Fig. 4e and Extended Data Fig. 9d) or 
when a large temporal offset is added to the neural data (Extended 
Data Fig. 9e,f). Notably, the pitch of calls and warble syllables was 
represented in a similar manner (Extended Data Fig. 9g), suggesting 
a shared representation across both vocalization types. Our results 
indicate that neural responses in the AAC form an accurate represen-
tation of vocal pitch.

Given our results at the population level, we further examined 
whether single neurons in the AAC are tuned to vocal pitch. During 
the production of a frequency-modulated element, we observed that 
some AAC neurons changed their firing in an orderly manner, suggest-
ing that different AAC neurons may be tuned to specific pitch values 
(Fig. 4f). To formalize this relationship, we calculated tuning curves 
for each individual neuron by plotting the mean neural responses as 
a function of pitch. We found neurons demonstrating strong tuning 
(Fig. 4g) as well as untuned neurons (Fig. 4g, bottom). Using a ‘tuning 
index’ that measures modulation of neural response across frequencies 
(Methods and Extended Data Fig. 10a), we found 51% (112 out of 220) of 
AAC neurons showed strong tuning for pitch (tuning index >6; Fig. 4h). 
Different pitch-tuned neurons had maximal responses at different 
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Fig. 3 | Distinct mapping of vocal acoustic types in the AAC state space.  
a, Example warble song from a budgerigar (BG3) with harmonic, low-frequency 
and noisy elements labelled at top. b, Low-frequency ratio (top) and harmonic 
index (bottom) of the vocal elements in a. Shading represents thresholds used 
to classify acoustic categories (Methods), with green, red and blue denoting 
low-frequency, harmonic and noisy types, respectively. c, Distribution of low-
frequency ratio and harmonic index across all four budgerigars. In each panel, 
the coloured region represents a specific acoustic type. d,e, Spiking activity  
of AAC neurons, with a closer view of three example cells (d) taken from the 
population (e), as indicated by coloured triangles on the left. f, Population 

neural responses to vocalizations were mapped to a three-dimensional state 
space using PCA, with each point denoting a neural state associated with vocal 
production (Extended Data Fig. 6a). In each column, neural states corresponding 
to a specific acoustic category are coloured the same as in c. Each row represents 
data from a single budgerigar. PC, principal component. g, Cumulative 
distribution of Euclidean distances between neural states within (solid line) or 
between (dotted line) acoustic categories for each bird. ***P < 10−100 (two-sided 
Wilcoxon rank-sum test). See Extended Data Table 1 for sample sizes and related 
information for statistical tests.
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frequency values. For instance, some neurons were most responsive 
when the bird produced low-frequency sounds (Fig. 4g, neuron (i)), 
whereas others were tuned to high frequency (Fig. 4g, neuron (iii)) or 

frequencies with intermediate values (Fig. 4g, neuron (ii)). Consist-
ent with our previous result, we observed similar tuning profiles of 
single neurons across both calls and warbles (Extended Data Fig. 10b). 
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Fig. 4 | Neural representation of vocal pitch in the AAC.  
a, Vocalizations with clear fundamental frequencies are 
identified using the harmonic index. b, Pitch distribution  
for frequency-estimated vocal elements (dark grey in a)  
from budgerigar BG2. c, Population neural responses to 
vocalizations were mapped to a two-dimensional state space 
using PCA. Coloured dots represent neural states underlying 
frequency-estimated vocalizations (colour indicates pitch) 
and grey dots denote vocalizations with unmeasurable  
pitch. d, Neural state space for three other budgerigars.  
e, Relationship between pitch and the projection of neural 
states onto the neural frequency axis (black lines). Grey lines 
denote results from shuffled data. Lines represent the mean 
and shading indicates the 10th and 90th percentiles. f, AAC 
activity during the production of a frequency-modulated 
vocal element. Neurons sorted using Rastermap62. Scale bar, 
100 ms. g, Pitch tuning in four example neurons from f, 
presented as binned scatter plots (grey) and averaged firing 
rates (mean ± s.e.m.) across pitches (green). Blue circles: 
baseline firing rates. h, Distribution of pitch-tuning index 
across four budgerigars. Pitch tuned (black): indices >6.  
i, Normalized response to pitches of all pitch-tuned neurons  
in each budgerigar. Triangles indicate neurons in g. j, Example 
sonograms (top) with measured and decoded pitch. Grey lines 
represent measured pitch (in yellow on sonogram) compared 
with cross-validated predictions of pitches using the five best 
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(blue) and all neurons (black). Image scale bar (top), 50 ms; 
vertical scale bar (bottom), 1 kHz. k, Relationship between 
decoded and measured pitches across all analysed vocalizations 
from BG2. Colours are the same as in j. l, Cross-validated 
decoding accuracy, quantified by the proportion of variance 
in measured pitch explained by the predicted pitch (R2), for 
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(black). *P < 0.01 (n = 4 budgerigars, two-sided paired t-test; 
Extended Data Table 1).
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Across the population, pitch-tuned neurons had preferred frequencies 
that seemed to tile the entirety of the behaviourally relevant range 
(Fig. 4b,i and Extended Data Fig. 9b). To confirm that pitch is promi-
nently encoded by AAC neurons, we built a generalized linear model 
(Methods) and found that pitch contributes significantly more than 
other acoustic factors (for example, entropy; Extended Data Fig. 10c).

As a last step, we trained a linear regression model to decode 
time-varying pitch from the spiking activity of AAC neurons. Using 
this approach, we attempted to predict the fundamental frequency of 
vocal elements that were held out during the training process (Meth-
ods). Using just five neurons with the largest tuning index, we could 
accurately predict pitch (Fig. 4j,k). By contrast, five untuned neurons 
(that is, lowest tuning index) did not enable any predictive power with 
respect to this parameter (Fig. 4j,k). As we incorporated more neurons 
into the model, decoding accuracy increased (Fig. 4j–l). Furthermore, 
decoders trained on warble syllables accurately predicted the pitch 
of calls (Extended Data Fig. 10d), supporting the notion that pitch is 
universally represented across vocal types in the AAC. This represen-
tation differs fundamentally from that observed in zebra finch RA, in 
which single neurons do not relate to a consistent pitch (Extended Data 
Fig. 11). Using decoders, we found no predictive value of the relation-
ship between pitch and RA neuron spiking in the zebra finch (n = 7 
birds, Pearson’s R = −0.02 ± 0.20; Extended Data Fig. 12a) compared 
with budgerigar AAC (n = 4 birds, Pearson’s R = 0.84 ± 0.05; Extended 
Data Fig. 12b). Taken together, our results confirm that AAC neurons 
systematically represent vocal pitch and imply that the AAC can exert 
precise control over this parameter.

Discussion
We investigated the neural mechanisms that underlie the production of 
flexible vocal elements in the budgerigar and found a highly structured 
representation of articulatory features at both single-cell and popula-
tion levels in the forebrain area AAC. This mapping between neural 
population activity and vocal acoustics parallels the representation 
of phonetic features in the human speech cortex2,4–6 and probably 
enables budgerigars to reuse and recombine existing neural solutions 
to produce new sounds, facilitating flexible vocalization and enabling 
rapid learning44.

Several lines of evidence support the notion that AAC neurons encode 
parameters of the vocal musculature. First, we found contrasting neural 
population signatures for aperiodic (or noisy) and harmonic vocaliza-
tions. These two types of vocalization are linked to distinct oscillatory 
states of the avian vocal organ, the syrinx45. Although the anatomical 
structure of the budgerigar syrinx has been investigated46, further ex 
vivo and modelling studies are needed to understand the syringeal 
mechanisms involved in vocal production47. An important considera-
tion is that budgerigars and zebra finches exhibit key differences in 
the structure and mechanisms of the syrinx. In the zebra finch, the 
syrinx contains two sound sources48, with each source independently 
controlled by the vocal motor nucleus and RA on the ipsilateral side48,49. 
By contrast, the budgerigar syrinx contains a single sound source32,43, 
which could be controlled by their vocal motor nucleus and the AAC 
on both hemispheres19,50. Future research could investigate whether 
these differences in anatomical organization may relate to the dis-
tinct coding schemes observed between RA and the AAC. Second, the 
geometry and organization of the neural representation of vocaliza-
tions are highly consistent across individual birds (Figs. 3f and 4c,d). 
Because each budgerigar has a distinct vocal repertoire51, our finding 
of a ‘universal’ motor representation in the budgerigar forebrain indi-
cates that AAC neurons do not represent the individual vocalizations 
per se, but instead the underlying motor processes that generate those 
vocalizations. We thus propose that AAC neurons uniquely encode the 
acoustic outcome of motor commands using forebrain motor-control 
strategies resembling those observed in the human speech cortex. 

Future studies that simultaneously record AAC and syringeal muscle 
activity52, together with pressure measurements of subsyringeal air 
sacs53, can elucidate how AAC neurons coordinate breathing patterns 
with muscle contraction during vocal production.

The moment-to-moment control of articulatory parameters that 
we characterize in the budgerigar forebrain is fundamentally different 
from that observed in other non-human species studied to date. An 
important distinction can be made when comparing the budgerigar 
with the Bengalese finch (Lonchura striata domestica), in which changes 
to RA activity covary with song structure at specific moments54, a pro-
cess mediated by basal ganglia inputs critical for vocal learning55. As an 
ensemble, however, the activity observed in RA7 as well as vocal fore-
brain regions in rodents8 and non-human primates9 does not seem to 
‘reuse’ premotor commands for similar articulatory parameters, which 
suggests a distinct population code. Other vocal forebrain circuits 
featuring volitional signals9,11 or information related to social context10 
also lack a representation of ongoing articulatory parameters. The 
vocal motor map in the budgerigar brain therefore allows a unique 
opportunity to investigate neural dynamics that functionally resemble 
those engaged during human speech production at both the circuit and 
cellular level. Differences still exist between these species, including the 
presence of only weak auditory responses in primary vocal production 
structures of the budgerigar (that is, the AAC), in contrast to the strong 
auditory responses observed in the human speech cortex6,56. Never-
theless, our results introduce the budgerigar as an exciting model for 
exploring mechanisms of vocal production and flexibility, and further 
experiments incorporating manipulation techniques have the potential 
to influence therapeutic approaches for a range of disorders that affect 
speech motor control22,23.

In this study, we demonstrate that individual neurons in the budg-
erigar AAC represent motor commands with a distinct acoustic out-
come. Similar to the encoding of colour in the retina57, individual 
AAC neurons seem to feature broad tuning curves that span a wide 
frequency range (Fig. 4i), enabling an accurate frequency representa-
tion at the population level. How these AAC neurons are engaged by 
upstream structures remains poorly understood. The AAC receives 
inputs from several forebrain areas, including the central nucleus of 
the lateral nidopallium19,20, a region lateral to the AAC, and two other 
regions in the anterior forebrain18, the oval nucleus of the anterior 
mesopallium and the oval nucleus of the anterior nidopallium. Previ-
ous studies using targeted lesions43 or inactivation13 suggest that these 
two anterior areas are important for the production of frequency 
modulation in budgerigar calls. It is not yet known whether one of 
these regions primarily controls the AAC song production circuit or 
whether vocal production requires the coordinated activity of mul-
tiple upstream nuclei. Future investigations are needed to uncover 
how these regions may perform functions that resemble higher-level 
prefrontal areas involved in speech planning58 and timing59. Taken 
together, we reveal a previously undescribed vocal motor interface in 
the budgerigar forebrain, raising the exciting possibility that features 
relevant for speech production may be mechanistically examined in 
an animal model.
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Methods

Animals
We used adult (>240 days after hatch) male budgerigars (M. undulatus) 
and adult (>90 days after hatch) male zebra finches (T. guttata) obtained 
from external breeders. The number of budgerigars was selected on the 
basis of previously published electrophysiological studies in birds17,34,63. 
All birds were maintained in a temperature- and humidity-controlled 
environment with a 12-h light/12-h dark schedule. All animal main-
tenance and experimental procedures conformed to the guidelines 
established by the Institutional Animal Care and Use Committee at 
the New York University Langone Medical Center.

Surgical procedures
All surgical procedures were performed under anaesthesia (1–3% iso-
flurane in oxygen) following established guidelines. We used similar 
approaches for implanting high-density silicon probes as those pre-
viously used by our group17,34,63. In brief, DiI (V22885, Thermo Fisher 
Scientific) was applied to probe shanks using a soft brush. The probe 
was then implanted into the target region by using stereotaxic coor-
dinates relative to the bifurcation of the sagittal sinus. For recordings 
in budgerigars, we positioned the beak bar 17° down from horizon-
tal and inserted the probe vertically. At this angle, the AAC coordi-
nates were 5–6 mm lateral and 5–6 mm anterior. All AAC recordings 
were performed in the left hemisphere and in the dorsal subdivision 
of the AAC18,20 (Extended Data Fig. 2b). A piezoelectric microphone 
(BU-33356-000, Knowles) was cemented to the skull overlying the 
right hemisphere using dental acrylic64. A ground wire was inserted 
under the skull approximately 3 mm posterior to the craniotomy site 
for the AAC. Throughout the implantation process, we continuously 
monitored electrical activity across all channels using the Intan record-
ing system (RHD 1024ch Recording Controller and RHX data acquisi-
tion software, Intan Technologies). After successful identification of 
the AAC (depth: 3–3.6 mm), silicon elastomer (Kwik-Cast, WPI) was 
applied to the craniotomy. Our electrodes covered a spatial range of 
450 µm anterior–posterior and 300 µm dorsal–ventral, enabling us to 
record from a substantial portion of the AAC (diameter: approximately 
900 µm). After the recordings were completed, electrode positions 
were confirmed through histology (Extended Data Fig. 2a,b).

Recordings from zebra finch RA were collected as part of previously 
published studies by our group34,63. RA was located at 2.35 mm lateral 
and 0.1 mm posterior from the bifurcation of the superior sagittal sinus 
and 2.5–3.0 mm below the brain surface. RAs of both hemispheres 
were recorded in four zebra finches (ZF1–ZF4) and data were com-
bined across hemispheres in these cases63. In the remaining three zebra 
finches (ZF5–ZF7), only RA of the right hemisphere was recorded34.

Silicon probe and behavioural recordings
All AAC data were recorded in chronically implanted, freely mov-
ing budgerigars using integrated 128-channel high-density silicon 
probes (128-5, Diagnostic Biochips). Before implantation, a coated 
stainless-steel ground wire (0.0254-mm thickness, A-M Systems) was 
soldered to the reference contact of the headstage of the probe. The 
headstage was then secured in a customized protective casing made 
in-house using a 3D printer (Formlabs). Finally, the base of the shanks 
of the probe was fixed to a custom-designed microdrive by super glue 
(Loctite).

Chronic silicon probe recordings of budgerigars were performed 
in an arena in a sound-isolation chamber. The arena consisted of two 
conjoined cylindrical cages (Extended Data Fig. 13a) separated by a clear 
acrylic sheet. After probe implantation, the budgerigar was allowed to 
recover from anaesthesia and then put into one half of the arena, with 
four other familiar budgerigars housed in the other half, an arrange-
ment that stimulated vocal production in recorded birds. We addition-
ally supplemented the social environment with low-amplitude audio 

playback of budgerigar vocalizations through a nearby speaker29. Budg-
erigar vocalizations were recorded using a piezoelectric microphone 
(BU-33356-000, Knowles), which conducted sounds through the skull 
and provided high-quality and highly selective vocal signals with little 
contamination from environmental sounds64 (Extended Data Fig. 13b).

We continuously recorded neural activity and vocalizations from 
the bird immediately after being placed in the arena. Neural and piezo-
electric signals were transmitted to the Intan recording system (RHD 
512ch Recording Controller, Intan Technologies) through an assisted 
electrical commutator (Doric Lenses), which facilitates free movement 
of the bird. Audio signals from both the piezoelectric and ambient 
microphones (AT803, Audio-Technica) were amplified by an analog 
preamplifier (TPS II, ART ProAudio) before being sent to the Intan con-
troller. All data were sampled at 30 kHz. Playback experiments through 
a nearby speaker were performed on two budgerigars (BG3 and BG4). 
Three calls and three warble segments (duration: approximately 1 s) 
from the repertoire of the bird were played back during non-vocal peri-
ods. Each audio stimulus was played ten times in a randomized order.

Details pertaining to recording procedures in zebra finches have been 
described elsewhere34,63. Data from one zebra finch (ZF1) were collected 
acutely from a bird trained to sing while head-fixed63. In this bird, neural 
activity from RA was collected using a 64-channel silicon probe (64-H, 
probe obtained from S. Masmanidis). For all other zebra finches, neural 
recordings were performed chronically using the same 128-channel 
probes as used in budgerigar recordings. Vocalizations were elicited 
by female finches placed in a neighbouring cage and recorded using an 
omnidirectional microphone (AT803, Audio-Technica). To directly com-
pare vocalizations of zebra finches with those of budgerigars (Fig. 1c–f), 
we implanted a piezoelectric microphone (BU-33356-000, Knowles) in 
a single zebra finch. After the surgery, the bird was placed in a cage on 
one side of the arena while a cage on the other side housed two female 
zebra finches to elicit songs from the implanted bird.

Histology
After recording, birds were perfused transcardially with PBS followed 
by 4% paraformaldehyde. Probes were lifted from the brain using the 
microdrive, and brains were extracted and left overnight in paraform-
aldehyde. Subsequently, the brains were sliced at a thickness of 100 µm 
using a vibrating microtome (VT1200S, Leica). Slices were mounted 
using Vectashield mounting medium (Vector Laboratories) and imaged 
with a slide scanner (VS120, Olympus) using the OlyVIA software.

Data analysis
Detection of vocalizations. For each budgerigar, we analysed data 
from the first day that birds produced warble songs following electrode 
implantation. Two budgerigars sang on the same day as the surgery, 
whereas the other birds initiated singing after one or two days. For each 
bird, we examined the initial period of audio recording containing at 
least 5 min of cumulative vocalizations, including both calls and warble 
songs but excluding the silent gaps between them. One of the four 
birds (BG2) vocalized less than 5 min during the recording session, so 
we analysed the entire audio recording.

Budgerigar vocalizations were detected using spectral features. 
Audio signals were first high-pass filtered (250 Hz) and then converted 
into spectrograms using the short-time Fourier transform (window size: 
8.5 ms, step size: 1 ms). For each moment in the sonogram, a 3-ms analy-
sis window was evaluated; vocalizations were distinguished from silent 
periods by a minimum set of 50 continuous spectrotemporal samples 
exceeding a threshold. Consecutive time points were then grouped into 
intervals as putative vocal periods and sounds with durations shorter 
than 2 ms were discarded as non-vocal. We then manually removed 
any false-positive sounds (for example, originating from mechanical 
noise). After this process, each sound was defined as a single vocal ele-
ment, and warble songs were defined as vocal sequences comprising 
a minimum of three vocal elements separated by silent periods of less 
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than 1 s (ref. 65). The remaining vocal elements were classified as calls. 
For zebra finches, identities of vocalizations (that is, call 1, syllable A, 
and so on) were annotated manually34,61.

Comparison of vocal repertoires across species. We compared vocal 
repertories between the zebra finch and budgerigar (Fig. 1c–f) using 
vocalizations recorded by piezoelectric microphones. For this analysis, 
additional instances of three budgerigar call types were included from 
an independent recording session to increase the total number of trials. 
For the human speech analysis, data were taken from the Switchboard-1 
Telephone Speech Corpus (session ID: sw02012B)66, which totalled 755 
words spoken by an adult male English speaker using annotations pro-
vided by The Institute for Signal and Information Processing (https://
isip.piconepress.com/projects/switchboard/).

For this initial analysis (Fig. 1b,d,f), dimensionality reduction tech-
niques were applied to analyse the spectral structure of vocalizations 
from all species61. Background noise in each spectrogram was sup-
pressed by applying a threshold set at 60% of the range of spectral 
energy. Spectrograms were then standardized to a uniform length of 
300 ms through zero padding, after which they were projected into a 
25-dimensional space using PCA. For visualization, t-SNE was used to 
embed each 25-dimensional vocal element using a perplexity param-
eter of 30.

We also quantified three acoustic features for each vocal element: 
duration, mean pitch and entropy variance (Extended Data Fig. 1). Mean 
pitch and entropy variance were calculated on the basis of pitch and 
entropy estimations using Sound Analysis Pro (SAP)67.

Quantification of vocal-related neuronal activity. Spike sorting was 
performed using Kilosort68 and sorted clusters were further manually 
curated using Phy69 on the basis of criteria including interspike inter-
vals, auto-correlogram, cross-correlogram and waveform shape, as we 
had previously done in the zebra finch17,34,63. Two metrics, mean firing 
rates and bursting ratios, were used to assess neuronal responses to 
vocalizations. The mean firing rate for each neuron was computed 
as the total number of spikes divided by the total duration of specific 
time intervals. The bursting ratio was defined as the percentage of 
time a given neuron exhibited bursting activity. To quantify bursting, 
spiking patterns were first converted into instantaneous firing rates 
at a 1-ms resolution by using the inverse of the interspike interval that 
immediately surrounds each time point7. Bursting was then defined as 
instantaneous firing rates exceeding a designated threshold (100 Hz 
for zebra finch RA34,63 and 200 Hz for budgerigar AAC) on the basis of 
the distribution of interspike intervals (Extended Data Fig. 3h). These 
metrics were computed for both vocalization intervals (calls and song 
syllables) and for 10 s of baseline periods during which birds exhibited 
vocal quiescence.

To investigate the temporal relationship between AAC activity and 
vocal boundaries, we aligned the activity of each neuron to the onset 
of vocal elements that are preceded by a silent gap of at least 100 ms 
(Extended Data Fig. 3b). Furthermore, we aligned AAC activity with 
the end of vocal elements that are followed by a silent gap of at least 
100 ms (Extended Data Fig. 3c).

For each neuron, sparseness70 of its vocal activity was defined as
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where Rt was the instantaneous firing rate to the tth time point and T 
represented the summed duration in millisecond across vocal elements. 
Smaller sparseness is associated with more sparse neural activity.

Spectral and neural similarity analyses. We compared spectral and 
neural similarity between vocal elements. For zebra finches, all song 

syllables were included. For budgerigars, 50 syllables were randomly 
sampled from the pool of song syllables with durations longer than 
100 ms. Any repeated syllables were then removed, leading to 38, 50, 
43 and 45 unique warble syllables for each bird for subsequent analy-
sis. This selection process was adopted only for this specific analysis 
(Fig. 2i,j). For each possible pair of syllables in each bird, spectrograms 
were segmented using a 20 ms sliding window with a step size of 10 ms. 
Pearson correlations were computed between spectral segments of two 
syllables to generate the spectral similarity matrix. A neural similarity 
matrix was calculated using segments of population neural activity 
(that is, z-scored instantaneous firing rates) during production of the 
two syllables. For each neuron, the instantaneous firing rates were 
converted to z-score using the mean and standard deviation of the fir-
ing rates across vocal elements. Neural activity was shifted forward by 
12 ms before calculating similarity to account for vocal motor delay7. 
To quantify the relationship between spectral and neural structures, 
similarity matrices from all pairs of syllables were flattened and con-
catenated into a vector. Next, a Spearman correlation was performed 
between the concatenated spectral and neural similarity vectors.

To quantify similarity across renditions of the same vocal element, 
we analysed a dataset of zebra finch vocalizations recorded using the 
same piezoelectric microphone as for the budgerigars (BU-33356-000, 
Knowles; Extended Data Fig. 4a–c). We selected ten renditions of the 
four syllables produced by the zebra finch and segmented each syllable 
using identical parameters to those applied to the budgerigars (that 
is, 20-ms sliding window with a step size of 10 ms) and then calculated 
the correlation between all different renditions of the same segment, 
as well as the correlation between different segments across syllables.

Acoustic categorization of vocalizations. Acoustic properties of  
vocal elements were characterized by a low-frequency ratio and 
harmonic index. For every vocal time point (resolution: 1 ms), the 
low-frequency ratio was calculated as the logarithm of the ratio bet-
ween mean spectral power below 700 Hz and that between 700 and 
7,000 Hz. These two bands were chosen according to the fact that 
low-frequency syllables exhibit a fundamental frequency below 700 Hz 
(Extended Data Fig. 5a), whereas other syllables have fundamental 
frequencies exceeding this threshold and below 7,000 Hz (Extended 
Data Fig. 9b). The harmonic index was defined as HR × FI, where HR 
quantified the ratio of spectral energy that was harmonic and was cal-
culated using the ‘harmonicRatio’ function in MATLAB (https://www.
mathworks.com/help/audio/ref/harmonicratio.html; MATLAB Audio 
Toolbox, R2023a, Mathworks). FI, which represents the prominence of 
a fundamental frequency, was derived by first estimating the funda-
mental frequency of all vocalizations using SAP67. Mean spectral power 
was then computed for a fundamental band (400 Hz centred around 
the estimated fundamental frequency) and a nonfundamental band 
(400 Hz centred around 1.5 or 0.67 times the fundamental frequency 
for fundamental frequencies below or above 4.5 kHz, respectively). 
FI was then defined as the logarithm of the ratio between the mean 
spectral power of the two bands. FI was normalized to [0, 1] before 
calculating the harmonic index.

Vocal time points with low-frequency ratios above 1 were classified as 
low-frequency sounds. The remaining vocalizations were considered 
to have normal frequencies and displayed a bimodal distribution in the 
harmonic index (Fig. 3c). Vocal time points that fell in the bottom 20% 
and top 30% of harmonic indices pooled across birds were labelled as 
‘noisy’ and ‘harmonic’ sounds, respectively, while those between the 
30th and 50th percentiles were designated as ‘mixed’ sounds. To avoid 
the inclusion of short silent gaps in vocal elements, time intervals in 
any acoustic category with durations ≤4 ms were excluded.

Neural mapping of acoustic categories. To characterize single-neuron 
responses to the three acoustic categories, we defined a selectivity  
index for each category (Extended Data Fig. 5) as: (Rcat – Rbase)/(Rcat + Rbase),  

https://isip.piconepress.com/projects/switchboard/
https://isip.piconepress.com/projects/switchboard/
https://www.mathworks.com/help/audio/ref/harmonicratio.html
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where Rcat was the mean response of each neuron to the category stud-
ied and Rbase is the baseline firing rate of each neuron.

For population-level analyses, an N-dimensional (N: number of neu-
rons) vector was computed by calculating the firing rate of each neuron 
during a window from −30 to −5 ms to each 1 ms time point during 
vocalization. These N-dimensional vectors were then organized into an 
M × N neural response matrix, where M represented the total number of 
vocal time points. PCA was applied to the matrix, through which each 
N-dimensional neural vector was mapped into a three-dimensional 
neural space (Extended Data Fig. 6a) and then colour coded according 
to the corresponding acoustic categories. Eigenvalues and explained 
variances of the principal components (PCs) were examined to deter-
mine the contribution of each PC (Extended Data Fig. 6b).

To quantify the relationship between neural state and the harmonic 
index, we build linear regression models associating neural PC scores 
with the harmonic index:

∑h β β s= + (2)t
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where ht was the harmonic index at each time point t (resolution: 1 ms), 
sit was the score of the population response on the ith PC, and β0, …, 
βN were regression coefficients to be estimated, with N being the total 
number of PCs. For each budgerigar, the model was fitted on half of 
the data and tested on the other half. Model performance was evalu-
ated by R2:
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where Ht was the observed harmonic index, ht was the predicted index, 
and H  was the mean of the observed index.

For computational efficiency, distance between neural states within 
and across categories were calculated on the basis of the first three 
PCs. Two control analyses were performed to exclude the possibility 
that the smaller neural distance within categories was owing to the 
binning procedure. We performed a permutation analysis (Extended 
Data Fig. 8b). In each permutation, we shifted the spike train of each 
neuron by a random time between 100 and 500 ms. We then calculated 
the neural response distances within and between different acoustic 
categories on the basis of the same binning process mentioned above. 
We defined the statistic ∆D as the difference between the mean dis-
tance of neural responses between categories and within categories: 
∆D = mean (between-category distance) – mean (within-category dis-
tance). A larger ∆D indicates greater similarity in neural responses 
within categories compared with between categories. To generate a 
null distribution, we repeated the permutation process 1,000 times. 
We then calculated ∆D from the original unshuffled data.

Moreover, we performed a subsampling of the vocal time points, 
selecting those that were at least 25 ms apart to ensure that no 
N-dimensional neural vectors contained overlapping spikes. We then 
recalculated the neural distances within and between categories 
(Extended Data Fig. 8c,d).

Comparison of vocalizations across individual budgerigars. To 
compare the vocal repertoires of the four budgerigars, we first stand-
ardized each vocal element (including both calls and warbles) into 
spectrograms with a fixed duration of 125 ms. Vocal elements exceeding 
this length were segmented into 125-ms components using a sliding 
window with a step size of 5 ms. We then used a machine-learning-based 
algorithm, the variational autoencoder provided by the Autoencoded 
Vocal Analysis toolbox71, to represent each vocal element by latent 
features13. These latent representations were subsequently embedded 
into a low-dimensional space using uniform manifold approximation 
and projection (UMAP; Extended Data Fig. 7).

Neural mapping of vocal pitch. For each budgerigar, vocalizations for 
which the fundamental frequency could be estimated reliably were iso-
lated using the median as a threshold for the harmonic index (Extended 
Data Fig. 9a). All of the subsequent analyses were done on the basis of 
this set of frequency-tagged time periods. Pitch was estimated using 
SAP67. To visualize the representation of pitch in the neural ensemble, 
responses to these vocal time points were colour coded by the associ-
ated pitch in the two-dimensional PC space.

We quantified the geometry of the neural representation of pitch 
in the full-dimensional PC space. To avoid double dipping, all neural 
responses were first evenly split into odd and even halves (Extended 
Data Fig. 9c). In the first half, a neural frequency axis was computed by 
calculating the vector between the mean neural responses to the top 
50% and bottom 50% of pitches. Neural responses from the second 
half were then projected onto this neural frequency axis using the dot 
product of these two vectors. The relationship between pitch and neural 
projections was measured by computing the mean pitch in a series of 
neural projection bins (bin size: 3). For reliability, only bins containing 
more than 20 samples were included.

A control analysis was performed by randomly shuffling the pitch 
values (Fig. 4e) across vocalizations followed by the calculation of 
the neural frequency axis described above. This shuffling process 
was repeated 5,000 times. For each shuffled sample, the slope of the 
relationship between mean pitch and neural projection was deter-
mined by fitting a linear model between the two variables. The distri-
bution of slopes obtained from the shuffled data was then compared 
with the slope derived from the unshuffled data (Extended Data  
Fig. 9d).

We also investigated the neural representation of pitch using two 
windows (−125 to −100 ms and 100 to 125 ms), which were signifi-
cantly shifted from our original window (−30 to −5 ms; Extended Data 
Fig. 9e,f). For these three representations, we evaluated the extent to 
which pitch could be predicted on the basis of PC1 and PC2. Specifi-
cally, for each point on the two-dimensional neural map, we trained 
a linear regression model using all remaining data points to associate 
the coordinates of PC1 and PC2 with pitch. This model was then used to 
predict the pitch value of the left-out point. The squared error between 
the actual and predicted pitch values was used as a measure of model 
performance.

Single-neuron tuning to vocal pitch. For a given neuron, activity 
(firing rates over a window from −30 to −5 ms) to different pitch bins 
(bin size: 200 Hz) were averaged within the bin to obtain a tuning curve 
(Fig. 4g). Bins containing fewer than 20 samples were not included. To 
quantify the strength of tuning, mean neural responses were first cal-
culated for four pitch ranges (1–2 kHz, 2–3 kHz, 3–4 kHz and 4–5 kHz). 
A tuning index (Fig. 4h) was defined as the range of the four neural 
responses divided by the square root of the mean response to all pitches 
(Extended Data Fig. 10a).

To evaluate the relative contributions of pitch and other acoustic 
features to neuronal responses in the AAC, we performed a general-
ized linear modelling (GLM) analysis. For each neuron, we modelled 
responses to all vocal time points (1-ms resolution) using a Poisson 
GLM with an exponential link function. The four predictors included 
in the model are pitch, entropy, amplitude and frequency modulation. 
To test the significance of model fitting, we calculated the likelihood 
ratio test statistic:

λ = −2 × ( − ) (4)null modelℓ ℓ

where ℓmodel was the log-likelihood of the full model and ℓnull was the 
log-likelihood of a null model in which no predictors were included. 
We then shuffled the neural responses 1,000 times and calculated a 
null distribution of λ. The model fitting is considered significant only 
when λ is larger than the 99th percentile of its null distribution.
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For all neurons with a significant GLM model fitting, we calculated 

the relative contribution of each predictor (Extended Data Fig. 10c) 

using a previously described72,73 equation: 
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where MR f
2  was the McFadden’s R2 for the full model and MRp i,

2  repre-
sented the McFadden’s R2 for a partial model with the ith predictor 
excluded.

Neural decoding of vocal pitch. Any vocal elements containing 
frequency-tagged periods were included in the decoding analysis. A 
leave-one-out approach74 was used for training and predicting pitch. 
Assuming there were V qualified vocal elements, for each of them, 
population responses to the remaining V-1 vocal elements were used 
to build a linear regression model:

∑f β β r= + × (5)t
i

N

i it0
=1

where ft was the fundamental frequency at a frequency-tagged time 
point t (resolution: 1 ms), rit was the firing rate of the ith neuron over 
the time window of t–30 to t–5 ms and β0, …, βN were regression coeffi-
cients to be estimated, with N being the number of neurons. This model 
was then applied to the neural responses to the held-out vocal element 
to predict fundamental frequency.

Various populations of neurons were used to compare decoding 
performance, which was quantified by R2:
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where Ft was the observed pitch, ft was the predicted pitch, and F  was 
the mean of the observed pitch.

To investigate whether warble syllables and calls are represented 
similarly in the AAC population, we performed an extra decoding analy-
sis in which the linear model was trained on warble syllables only and 
then used to decode pitch of calls (Extended Data Fig. 10d).

Pitch representation in zebra finch RA. We examined pitch represen-
tation in RA at both the single-neuron and population level. For each 
RA neuron, all burst events occurring during song production were 
identified (Extended Data Fig. 11c). These burst intervals were then 
adjusted by a motor delay (12 ms) to determine the corresponding 
vocal intervals, from which mean pitch values were extracted. These 
burst-associated pitch values were then plotted across the whole popu-
lation (Extended Data Fig. 11d). For each neuron, we calculated the mean 
and variance of its burst-associated pitch values. A random sample of 
pitch values, matching the number of burst-associated values, was 
drawn from the rest of the population to establish a null distribution for 
the mean and variance of burst-associated pitch. Moreover, we plotted 
the relationship between firing rates (measured in a window of −30 to 
−5 ms) and pitch values across syllables, calls and introductory notes 
in the vocal repertoire of a zebra finch.

At the population level, we performed pitch decoding similar to the 
approach used with the budgerigar. Specifically, for each song syllable, 
a linear decoder (as described by equation (5)) was trained to associate 
RA neuron firing rates with the pitch of the remaining syllables. This 
decoder was then used to predict the pitch of the withheld syllable 
(Extended Data Fig. 12a).

Statistics. Nonparametric statistical tests (for example, Wilcoxon 
rank-sum and permutation tests) were performed without assump-
tions regarding data distribution. In Fig. 4l, for which the sample size 

is small (n = 4), a parametric test was adopted. Exact P values, sample 
sizes and other information for each statistical test are detailed in Ex-
tended Data Table 1.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data used in this study have been uploaded to Zenodo (https://doi.
org/10.5281/zenodo.14057061)75. The Switchboard Telephone Speech 
Corpus is accessible through the Linguistic Data Consortium (https://
catalog.ldc.upenn.edu/LDC97S62) and existing annotations of the 
corpus are provided by The Institute for Signal and Information Pro-
cessing (https://isip.piconepress.com/projects/switchboard/). Source 
data are provided with this paper.

Code availability
The primary code used in this study is available at Zenodo (https://doi.
org/10.5281/zenodo.14057061)75.
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Extended Data Fig. 1 | Acoustic representation of vocal repertoires across species. a-c, Mean pitch, duration, and entropy variance from a human (a), a zebra 
finch (b), and a budgerigar (c). Data represent the same spoken words and vocal elements analyzed in Fig. 1a–f. d, Overlay of data from panels a through c.
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Extended Data Fig. 2 | Histology and single unit quality. a, Histological 
validation of silicon probe placement in zebra finch RA. Left, sagittal slice 
illustrating probe position, marked by DiI applied to the probe shank (red). 
Right, expanded view of the boxed region highlighting RA (white arrows) on the 
right. b, Histological validation of silicon probe placement in budgerigar AAC. 
Left, brightfield image of a coronal slice showing the position of the silicon 
probe, marked by DiI applied to the probe shank (red). Right, expanded view of 
the boxed region indicating dorsal AAC (AACd) and ventral AAC (AACv) by 

white and yellow arrows, respectively. c, Example single-unit waveforms and 
autocorrelograms from budgerigar AAC recordings. Mean waveforms (red) are 
overlaid on single-trial waveform traces, which are represented as gray lines. In 
the autocorrelogram, orange vertical lines indicate the refractory period (−1 to 
1 ms). d, e, Distributions of peak-to-peak amplitude (d) and the percentage of 
refractory period violations (e) across all AAC single units (n = 220 from 4 birds). 
Illustrations of the zebra finch in a are reproduced from ref. 60, Elsevier.



Extended Data Fig. 3 | Vocal motor responses in AAC and RA. a, Mean firing 
rates of AAC neurons during vocalization and baseline for each individual 
budgerigar. Exact p-values displayed within each plot are from two-sided 
Wilcoxon signed-rank tests (n = 49, 81, 43, 47 neurons for each plot). b, Population- 
averaged responses aligned to the onset of vocal elements that are preceded by 
a silent gap of at least 100 ms. c, Population-averaged responses aligned to the 
offset of vocal elements followed by a silent gap of at least 100 ms. d, Spiking 
activity from a population of AAC neurons (BG3) during example vocalization, 
playback, and quiet baseline periods. e,f, Mean firing rates of AAC neurons 

during vocalization compared with playback (e) and during playback compared 
with baseline (f). Exact p-values displayed within each plot are from two-sided 
Wilcoxon signed-rank tests (n = 43, 47 neurons for the BG3 and BG4 plots, 
respectively). g, Bursting ratios of AAC neurons during vocalization and baseline 
for each individual budgerigar. h, Distribution of interspike intervals of AAC 
neurons pooled across budgerigars. i,j, Mean firing rates (i) and bursting ratios 
( j) of RA neurons during vocalization and baseline for each zebra finch. 
Illustrations of the zebra finch in i are reproduced from ref. 60, Elsevier.
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Extended Data Fig. 4 | Neural similarity in budgerigar AAC is not driven by 
vocal reuse of elemental components. a, Sonogram of an example zebra finch 
song recorded using the same piezoelectric microphone as used for budgerigar 
recordings. b, Schematic of the methodology for quantifying correlations 
between unique and repeated vocal segments. Each zebra finch syllable was 
decomposed into 20-ms segments using a sliding window with a 10-ms step size. 
Correlations for repeated segments (vocal reuse) were calculated between 
corresponding segments across 10 renditions (2 renditions shown for illustration) 
of each syllable. Correlations for unique segments (vocal similarity) were 
calculated between segments from different syllables. c, Distributions of 

correlation values between vocal similarity (orange) and reuse (blue), with 0.6 
set as a threshold to distinguish between the two conditions. d, Distribution of 
correlation values across all vocal segments analyzed in Fig. 2 for each budgerigar, 
with percentage of correlations above 0.6 indicated on the right, representing 
potential vocal reuse. e, Correlation between spectral similarity and neural 
similarity matrices for an example budgerigar (left) and accompanying population 
data (right), excluding all cases with spectral correlation values exceeding 0.6. 
ρ denotes Spearman’s correlation value. P-values displayed within each plot are 
from two-sided permutation tests (n = 216,848, 1,113,918 pairs of vocal segments 
for each plot, respectively).



Extended Data Fig. 5 | Single-neuron representation of vocal acoustic 
categories. a, Distribution of fundamental frequencies in budgerigar 
vocalizations shows a clear minimum at 700 Hz. b-d, Distribution of the selectivity 
index for low frequency (b), harmonic (c), and noisy (d) vocalizations across the 

AAC population. Colored bins indicate neurons with a selectivity larger than 
0.5 for each index. e, Venn diagram displaying the number of neurons with 
selectivity indices larger than 0.5 for each of the three categories.
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Extended Data Fig. 6 | Constructing the neural state space. a, Schematic 
illustrating the construction of the neural state space. Population neural 
response within 25-ms time windows were mapped to a three-dimensional 
space using PCA (see Methods). b, Scree plots depicting the eigenvalues and 

explained variances for the first 10 neural PCs. Each line represents a single 
budgerigar. c, Harmonic index (indicated by color of each dot) plotted on state 
space diagram for all 4 budgerigars. Low frequency notes (that is, gray dots) not 
included in this analysis.



Extended Data Fig. 7 | Comparison of vocal repertoires across budgerigars. a, UMAP projections of latent representations of budgerigar vocalizations. Each 
plot represents an individual bird. b, Combined UMAP plot displaying data from all budgerigars.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Populational representation of acoustic categories 
and neural dynamics during vocal production in AAC. a, Cumulative 
distribution of Euclidean distances between neural states within (colored line) 
or across (black line) acoustic categories for each budgerigar. Distance within 
each category is significantly smaller than between categories (P < 10−100 for all 
tests). P-values shown within each plot are from two-sided Wilcoxon rank-sum 
tests (n = 66,349,440, 144,270,591, 671,739,531, 44,391,753, 1,854,597,921 
instances of distances [1st plot]; n = 613,278, 7,657,741, 57,829,635, 3,801,903, 
101,861,288 instances of distances [2nd plot]; n = 13,512,201, 318,087,253, 
270,688,278, 94,772,028, 1,578,197,393 instances of distances [3rd plot]; 
n = 20,196,190, 86,638,866, 710,136,141, 37,840,650, 1,317,021,524 instances of 
distances [4th plot]). b, Mean difference between within-category and between-
category neural distances derived from the true data (black vertical lines) 
plotted against the null distribution generated by randomly shifting spike 
times (see Methods). Exact p-values displayed in each plot are from one-sided 
permutation tests (n = 1,000 permutations). c, Cumulative distribution  
of Euclidean distances between neural states within (solid line) or across 

(dotted line) acoustic categories, based on a subsample of non-overlapping 
neural states (see Methods). P-values shown within each plot are from two-sided 
Wilcoxon rank-sum tests (n = 1,435,416 within and 2,902,569 between category 
instances of distances [1st plot]; n = 119,859 within and 168,561 between category 
instances of distances [2nd plot]; n = 1,113,510 within and 2,508,576 between 
category instances of distances [3rd plot]; n = 1,326,700 within and 2,000,210 
between category instances of distances [4th plot]). d, Similar to c but with each 
within-category distances plotted separately as colored lines. P-values shown 
within each plot are from two-sided Wilcoxon rank-sum tests (n = 106,491, 216,811,  
1,038,961, 73,153, 2,902,569 instances of distances [1st plot]; n = 990, 11,628, 
101,025, 6,216, 168,561 instances of distances [2nd plot]; n = 21,528, 503,506, 
445,096, 143,380, 2,508,576 instances of distances [3rd plot]; n = 30,381, 125,250, 
1,113,778, 57,291, 2,000,210 instances of distances [4th plot]). P < 10−100 for all 
tests. e, Neural trajectories for three example vocal elements spanning two 
acoustic types. Color indicates time within the element. Grayscale dots are the 
neural states corresponding to the three acoustic types (see labels in panel at left).
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | A neural frequency axis in AAC state space. a, Pitches 
(white lines on top) were estimated from vocalizations with harmonic indices 
that exceeded the median of the distribution (shaded region). b, Distribution of 
estimated pitches for each individual budgerigar. c, Schematic of the calculation 
of the neural frequency axis. The axis was computed as the vector between the 
mean neural responses to low and high pitches in half of the data. The other half 
of the data was then used to calculate the relationship between pitch and 
projection onto the axis (see Methods). d, Slope of the relationship between 
pitch and projections onto the neural frequency axis for each budgerigar. Black 
vertical lines denote slope from data; gray distributions indicate slopes from 
pitch-shuffled data. Exact p-values displayed in each plot are derived from one-
sided permutation tests (n = 5,000 permutations). e, Population neural 
responses at different time windows relative to vocalizations were mapped to a 
two-dimensional state space using PCA. Colored dots represent neural states 

underlying vocalizations with frequency estimated (color indicates pitch), and 
gray dots are associated with less harmonic vocalizations whose pitch was 
difficult to estimate. f, Performance of a linear model in predicting pitch values 
using scores of the first two PCs for neural responses calculated within a motor 
time window (−30 to −5 ms), compared to two other time windows with large 
temporal shifts (−125 to −100 ms and 100 to 125 ms). P-values displayed within 
the plot are from two-sided Wilcoxon rank-sum tests (n = 14,566 neural states) 
with Bonferroni correction. Boxplot elements: center line, median; box limits, 
upper and lower quartiles; whiskers, minimum and maximum values excluding 
outliers. g, Population-level pitch representation (Fig. 4c) displayed separately 
for calls and warble syllables. Colored dots denote neural states associated 
with pitches in calls (left) or warble syllables (right). Gray dots represent neural 
states for other vocalizations.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Pitch encoding in budgerigar AAC. a, Schematic of 
pitch tuning index calculation. b, Pitch tuning in three example neurons from 
Fig. 4g, presented as binned scatter plots (gray) and averaged firing rates 
(mean ± SEM) across pitches (green) for all vocal elements (left), only calls 
(middle), and only warble syllables (right). Blue circles represent baseline firing 
rates. c, Relative contributions of four acoustic features in GLM models 
explaining single AAC neuron responses shown for all neurons (left), pitch-
tuned neurons (pitch tuning index > 6; middle), and non-tuned neurons (pitch 

tuning index <6; right), respectively. Boxplot elements: center line, median; 
box limits, upper and lower quartiles; whiskers, minimum and maximum values 
excluding outliers. Exact p-values shown within each plot are from Bonferroni-
corrected, two-sided Wilcoxon signed-rank tests (n = 220, 112, 108 neurons for 
each plot, respectively). d, Relationship between decoded and measured 
pitches across all calls for each budgerigar, shown as binned scatter plots. 
Linear decoders trained on warble syllables were used to predict pitch in calls. 
R values represent Pearson correlation between decoded and measured pitches.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Neurons in zebra finch RA do not appear to encode 
pitch within the song. a-c, Burst-associated pitch values for an example RA 
neuron. Black boxes in a denote vocalization periods associated with bursting 
events (indicated by red bars in c), with vocal periods shifted by 12 ms relative 
to burst events. Pitch contour within each period is highlighted in b, with the 
mean pitch value marked by a green dot and a number next to the contour.  
d, Pitch values for all bursting events across the RA population. Each dot 
represents a burst event and its associated pitch. e, Relationship between 

firing rates and pitch for three example RA neurons, presented as binned scatter 
plots (gray) and averaged firing rates (mean ± SEM) across pitches (blue).  
f, Distributions of the range of burst-associated pitch values for observed data 
(blue) and for randomly sampled pitch values from d. g, Distributions of the 
variance of burst-associated pitch values for observed data (blue) and for 
randomly sampled pitch values from d. In f and g, Exact p-values shown on top 
are derived from two-sided Wilcoxon rank-sum tests (n = 116 samples).
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Extended Data Fig. 12 | Pitch decoding using population activity.  
a, Relationship between decoded and measured pitches using all RA neurons 
for each zebra finch shown as binned scatter plots. b, Relationship between 

decoded and measured pitches using all AAC neurons for each budgerigar. In a 
and b, R values represent Pearson correlation between decoded and measured 
pitches.



Extended Data Fig. 13 | Behavioral recording methodology. a, Photograph 
of recording arena for budgerigars with one budgerigar tethered on each side. 
b, Example recordings from an omnidirectional ambient microphone (top) and 

two piezoelectric microphones implanted on two budgerigars (bottom). 
Piezoelectric microphones enable excellent isolation of individual vocalizations 
which are mixed in the ambient microphone.
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Extended Data Table 1 | Information for statistical tests
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