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Cortical networks for the production of spoken language in humans are organized by
phonetic features'?, such as articulatory parameters®* and vocal pitch*é. Previous
research has failed to find an equivalent forebrain representation in other species” ™.
Toinvestigate whether this functional organization is unique to humans, here we
performed population recordings in the vocal production circuitry of the budgerigar
(Melopsittacus undulatus), asmall parrot that can generate flexible vocal output™®™,
including mimicked speech sounds®. Using high-density silicon probes”, we measured
the song-related activity of aforebrain region, the central nucleus of the anterior
arcopallium (AAC), which directly projects to brainstem phonatory motor neurons
We found that AAC neurons form a functional vocal motor map that reflects the
spectral properties of ongoing vocalizations. We did not observe this organizing
principlein the corresponding forebrain circuitry of the zebra finch, a songbird
capable of more limited vocal learning?. We further demonstrated that the AAC
represents the production of distinct vocal features (for example, harmonic structure
and broadband energy). Furthermore, we discovered an orderly representation

of vocal pitch at the population level, with single neurons systematically selective

for different frequency values. Taken together, we have uncovered a functional
representationin avertebrate brain that displays unprecedented commonalities with
speech-related motor cortices in humans. This work therefore establishes the parrot as
animportant animal model for investigating speech motor control and for developing

18-20

therapeutic solutions for addressing a range of communication disorders

22,23

Human speechrequires exquisite control over vocal production, show-
ing a high degree of flexibility while also maintaining the capacity to
reliably produce words (Fig.1a,b). Speech production engages several
cortical regions®>*, the activity of which often reflects the structure
of spoken utterances***. Although humans are the only species capa-
ble of language, a wide range of vocal abilities have been observed
in other animals®. For instance, the zebra finch, a species capable of
vocalimitation, canlearnto produce ashort (approximately 0.5-1.0's),
stereotyped song composed of ‘syllables’ as well as asmall set of calls?
(Fig.1c,d) whereas parrots, such as the budgerigar, can mimic conspe-
cificand heterospecific sounds throughout life’®'**®, Budgerigar vocali-
zations comprise sequences of variable vocal elements called warble
songs?* and spanaricher acoustic space (Fig.1e,fand Extended Data
Fig.1). Because of the high degree of flexible control inherent in both
the budgerigar song and human speech, we hypothesize that shared
neural representations may underlie these vocalizations.
Toinvestigate the mechanisms of vocal productionin the budgerigar,
werecorded the activity of akey forebrain structure, the AAC. Like the
human speech motor cortex and a well-characterized vocal motor
nucleus inthe zebrafinch, the robust nucleus of arcopallium (RA)"3%3
(Extended DataFig. 2a), the AAC densely innervates vocal motor neu-
rons'® % (Fig. 1g). Lesions® or electrical stimulation® in the AAC can

influence vocal production, indicating a primary role in motor control.
To test this idea, we recorded AAC activity (Fig. 1h and Extended Data
Fig. 2b-e) with a chronically implanted high-density silicon probe”
whilebirds produced flexible warble elements (n=1,403,522,1,381and
1,645for eachbird) and stereotyped calls (n=40, 61,27 and 43 for each
bird; Fig. 1e). During vocalization (including both calls and warbles),
AAC neurons (n =220 from 4 birds; n = 49, 81, 43 and 47 for each bird)
strongly increased their firing rates (baseline: 47.5 + 16.0 Hz; vocal:
95.5 +46.1 Hz; two-sided Wilcoxon signed-rank test, P=2.7 x107%)
(Fig.1h—-jand Extended Data Fig. 3a). Importantly, changes in AAC activ-
ity often preceded the onsets and offsets of vocal elements (Extended
DataFig.3b,c) indicating a premotor function. Therefore, AAC activity
corresponded to the production of vocalizations.

To confirm that the observed responses in the AAC are specific for
vocalmotor productionrather thanauditory processing, we performed
playback experiments with two birds (Methods). We found that AAC
firing rates were significantly higher during vocalization than playback
(vocal:108.3 + 44.8 Hz; playback: 55.3 + 16.4 Hz; Extended DataFig.3d,e;
two-sided Wilcoxon signed-rank test, P<107 for both birds). Compared
withactivity duringa10 snon-singing period (baseline: 52.0 +15.5 Hz),
playback elicited a small but statistically significant increase in firing
rate (Afiring rate: 3.2 + 3.8 Hz; two-sided Wilcoxon signed-rank test,

'NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA. *Center for Neural Science, New York University, New York,

NY, USA. ®e-mail: mlong@med.nyu.edu

Nature | Vol 640 | 10 April 2025 | 427


https://doi.org/10.1038/s41586-025-08695-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-08695-8&domain=pdf
mailto:mlong@med.nyu.edu

Article

) &
“Invaded” “Typical thing that happens” Call1 Call2 Syll. A
Trial 1 F
e
“Uh  when
Trial 2 3 =5
“Iﬁ:omes f@_a sense o_f fa(cts)”
Trial 3 _ 3
b
Call2 — ﬁ B
=
? Call 1

w \
C
{ “Invaded”
t-SNE 1
h
BG3 Warble song
(/((4@
\,
shu’
1 TR Lt Tl 'y
’ b TP il e
Silicon probe o e G T T g
I A A o A PR
R A YY1 P ety
o bR O el 1 UL S
SR A e TN T TR Y H I N
R Uy S RNk i, LASRRARNIT e LT
g L L L TR AR S LT L L R L L L R I LA Y
T T T Ty O et VR
Vocal organ i o 5 T 1 1 1
(syrinx) L TN YRy gy 1
ot Bl R Tl e T T,
43 A B
m
ZF1 Song

@

1-
Silicon probe
N k> m—
€
3
=
<
g "
3 "t
2 "
o = LAl
Vocal organ "
(syrinx)
67,\\\““‘\\‘1“‘ ol " - i

(/(trO
X
R
Song o
B Call 1 Call2 Call3 Warble song

Fig.1|Comparative vocal behaviour and underlying neural activity.

a, Example sonograms of a single human speaker excerpted froma10-min
session of the Switchboard corpus (Methods). Scale bar, 0.2s. b, t-distributed
stochastic neighbour embedding (¢-SNE) representation of spectrograms of
the spokenwords from the session usedin a, withall the instances of the word
‘invaded’ highlightedin cyan. ¢,d, Example sonograms (c) and ¢-SNE (d) of
vocalizations by azebrafinch (ZF).Scale bar, 0.1s. Syll., syllable. e,f, Example

sonograms (e) and t-SNE (f) of vocalizations by abudgerigar (BG). Scale bar, 0.1s.

g, Vocal production pathway in the three species, highlighting direct projections
from forebrain to brainstem vocal motor neurons. nXlIts, tracheosyringeal
hypoglossalnucleus. h, Population recording in budgerigar AAC highlighting
spiking activity during example vocalizations and non-vocal baseline periods.
Scalebars, 100 ms.i,j, Meanfiring rates of AAC neurons during vocalization
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versus during baseline for an example bird (i; BG3) and for data pooled fromall
budgerigars (j, n=4birds). Each circlerepresentsaneuron.k,l, Bursting ratios
of AAC neurons for an example bird (k; BG3) and for data pooled from all
budgerigars (I, n =4 birds). Each circle represents aneuron. m-q, Population
recordings (m) from RA and associated quantification from asingle zebrafinch
(n,p; ZF1) and from pooled data (0,q, n = 7 birds). Scale bars, 100 ms. Sonogram
frequencyrange:0.3-4 kHzinaand 0.3-7 kHzin other panels. In all panels,
Pvalues are from two-sided Wilcoxon signed-rank tests. See Extended Data
Table1forexact P values, sample sizes and related information for statistical
tests. Illustrations of the zebrafinchin partscand marereproduced from

ref. 60, Elsevier. Schematics of thebrainin partshand mare adapted from

ref. 61, Springer Nature Limited.
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Fig.2|Different neural codingschemesinzebrafinchRA and budgerigar
AAC. a, Instantaneous firing rates (z-scored) of a population of RAneurons to
an example songsyllable (left) and spiking activity of agroup of selected
neurons across multiple renditions of that same syllable (right). FR, firing rate.
Scalebar,100 ms. b, AAC activity during a single call (left) and associated
time-aligned activity of representative neurons across trials of that same call
(right).Scale bar,100 ms. Coloured trianglesinaand b denote neurons shown
ontheright.c, Instantaneousfiring rates of zebrafinch RA neurons to two
example syllables. Numbered coloured bars on top denote 20 ms segments
expanded ontheright along with accompanying Pearson correlations of the
spectrograms (top) and neural activity (bottom) between each segment. Scale
bar, 50 ms.d, Spectral (top) and neural (bottom) correlation matrices for
syllablesinc.Scalebar,20 ms. e, Data from budgerigar AAC during production
oftwo examplesyllables, with threeindicated segments furtheranalysed on

P <107*for both birds; Extended Data Fig. 3d,f). During vocalization,
many AAC neurons showed a strong increase in bursting activity as
indicated by a“‘burstingratio’ or the proportion of time aneuron spent
bursting (baseline: 0.01 + 0.01; vocal: 0.14 + 0.09; two-sided Wilcoxon
signed-rank test, P=7.7 x 10~%; Fig.1h,k,| and Extended Data Fig. 3g,h).
We then compared our results with song-related activity inRA (n =502
neurons from 7 birds; n =67, 80,116,104, 48, 32 and 55 for each bird).
Both the RA firing rate (baseline: 30.9 + 8.8 Hz; vocal: 47.5 +19.6 Hz)
and burst ratio (baseline: 0.005 + 0.008; vocal: 0.11 + 0.06; Fig. Im-q
and Extended Data Fig. 3i, j) increased during vocalization compared
with silent baseline periods, albeit with a higher degree of sparseness
than the AAC (RA: 0.21+ 0.06; AAC: 0.32 + 0.11; two-sided Wilcoxon
rank-sum test, P=1.45 x 10"*; Methods). These results support the
notion that the AAC, similar to zebra finchRA™*?, is a key vocal motor
areainthebudgerigar forebrain.

Budgerigar AACreuses neural ensembles

Having established the AAC as a forebrain motor control region, we
investigated the functional relationship between AAC populationactiv-
ity and vocal production. Previous research demonstrated that the
burst timing of neurons in the zebra finch RA is precisely structured
across song renditions”**** and our data are consistent with these
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theright.Scalebar, 50 ms. f, Spectral (top) and neural (bottom) correlation
matrices for syllablesine.g-j, Correlation between spectral similarity and
neural similarity matrices for an example zebra finch (g), an example
budgerigar (i) and accompanying population data (h,j). In each panel, spectral
and neural matrices were flattened and concatenated across syllable pairs
before plotting. p denotes Spearman’s correlation value. NS, not significant
(P>0.05),**P<107° (two-sided permutation test). See Extended Data Table 1
for sample sizes and related information for statistical tests. k,I, Neural coding
ofvocal production by RA (k) or the AAC (I) population. Notes on top represent
acoustic properties of vocalization; filled boxes indicate active neurons during
vocal production. Neural activity was shifted forward by 12 ms toaccount for
vocal motor delay (Methods). a.u., arbitrary unit. lllustration of the zebra finch
inpartaisreproduced fromref. 60, Elsevier.

findings (Fig.2a). To assess whether AAC activity has atemporally pre-
cise relationship with behaviour, we aligned repeated vocalizations
(for example, contact calls) and found that spiking was also highly
stereotyped (Fig. 2b). This reliable motor representation enabled us
to quantify the degree to which the neural activity could be related to
the acoustic structure of vocalizations. Previous research has demon-
strated that in zebra finch RA, acoustically similar portions of vocali-
zations were produced by distinct motor commands, establishing a
‘degenerate’ coding scheme’. Consistent with this previous result, we
found low neural correlation of RA ensembles across syllables, evenin
cases with ahigh degree of spectral similarity (Fig. 2c,d and Methods).

We observed a categorically different code in the budgerigar AAC
(Fig. 2e,f), where the vocal structure instead covaried with underlying
neural response patterns (Spearman’s p = 0.26, P<107%), in contrast
to the motor code observed in zebra finch RA (Spearman’s p = 0.02,
P=0.08; Fig.2g-j). Importantly, the relationship between neural and
spectral correlationin budgerigars could not be explained by the recur-
rence of identical vocal units across different syllables (Methods and
Extended Data Fig. 4). Our findings reveal a fundamental difference
between the forebrain control of song in these two species. In the
zebra finch, RA population activity changes throughout the course
of the song, such that different configurations are active at different
moments, representing an evolving population ‘barcode”**’ (Fig. 2k).
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By contrast, the AAC populationactivity in the budgerigar corresponds
totheacoustic structure of song, with similar neural ensembles ‘reused’
to produce vocal elements that have similar spectral features (Fig. 2l).

Mapping of vocal categoriesinthe AAC

Inhumans, the speech-related sensorimotor cortexis organized accord-
ing to phonetic features®>®; speech sounds with shared articulatory
parameters rely on reused motor commands**®, Given the correspond-
ence of vocal acoustic structure to neural activity in the budgerigar,
we examined whether an equivalent feature-based representation is
also present in populations of AAC neurons. Previous research has
demonstrated that the budgerigar warble is composed of acoustically
distinct elements™. Forinstance, 3 out of 4 budgerigars that we exam-
ined commonly produced distinct low-frequency syllables (n = 64,49
and 40 for birds 1, 3 and 4, respectively) with a concentrated spectral
energy below 700 Hz (Fig. 3a-c and Extended Data Fig. 5a). Moreover,
warbles were composed of features ranging from ‘consonant-like’ noisy
sounds withabroadband spectral distribution to ‘vowel-like” harmonic
elements that had a clear periodic acoustic structure® (Fig. 3a—c). To
quantify these vocal types, we developed a ‘harmonic index’ in which
these sounds represent two ends of a continuum (Fig. 3b,c and Meth-
ods). Fromthese behavioural analyses, we have defined a set of distinct
vocal components of the budgerigar repertoire.

We next investigated how these different acoustic categories are
represented inthe AAC. We found example neurons in which firing rates
seemed to belinked toindividual vocal types, including low-frequency
(green), harmonic (red) and noisy (blue) sounds (Fig. 3d, also see trian-
glesinFig.3e). We defined aselectivity index for each category (Meth-
ods and Extended Data Fig. 5b—d) and observed a diverse response
profileacross the AAC population (Extended DataFig. 5e). To determine
whether AAC neurons show distinct population response patterns
associated witheachacoustic category, we used principal component
analysis (PCA) to map the AAC population responses over awindow (-30
to-5mswithrespectto vocalization) into a three-dimensional neural
state space (Methods and Extended Data Fig. 6a,b). We then labelled
eachneural state (Fig. 3f and Supplementary Video 1) on the basis of the
vocalization produced (Fig. 3c). If the AAC populationencodes acoustic
categories, we would expect neural activity to form well-separated
clusters in this neural state space. We found that responses underly-
ing low-frequency vocalizations were distinct from all other neural
states and responses to noisy and harmonic vocalizations were also
clearly separated from each other (Fig. 3fand Supplementary Video 1),
indicating afunctional representation of vocal acoustic parametersin
the budgerigar AAC.

In addition to noisy and harmonic sounds, birds produce vocaliza-
tions that fall between these two categories and have intermediate
‘harmonicindex’ values (Fig. 3¢, bottom). We returned to the state
space representation to examine the neural ensemble activity during
the production of these ‘mixed’ warble elements. One possibility is
that such neural responses are heterogeneous and disorganized with
representations scattered across the neural space. Alternatively, mixed
neural responses could be localized in aspecific regionin this represen-
tation. We found that the latter was true: responses to mixed vocaliza-
tions were localized in between the neural representations for noisy and
harmonicsounds (Fig.3fand Supplementary Video 1). Moreover, when
we colour coded each neural state on the basis of its harmonicindex, we
observed a strong relationship between that parameter and the posi-
tioninthe state space (Extended Data Fig. 6¢). Supporting this notion,
alinearregression model using neural states as predictors explained a
substantial proportion of the variance in the harmonicindex (R*= 0.45,
0.62,0.51and 0.52 for eachbudgerigar; Methods). These results reveal
that AAC neural responses are organized according to the acoustic
features of vocalizations, forming an orderly representation of vocal
elements (that is, ranging from noisy to harmonic).
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We further examined whether the organizing principles that we
uncovered were similar across individuals. When we investigated the
neural state clusters in our population of four budgerigars that had
vocal repertoires with both shared and distinct components (Extended
DataFig.7), weuncovered a consistent relationship between AAC neural
space and the acoustics of produced vocal elements. For each bird, the
distance of neural states in each category (for example, noisy-noisy)
is significantly smaller than the distance between neural responses
across categories (two-sided Wilcoxon rank-sum test, P<107%; Fig. 3g
and Extended Data Fig. 8a). This result is not due to the spike binning
process, as neurons with shuffled spike times have significantly reduced
separation of neural states across categories (Methods and Extended
DataFig. 8b). Ourresults also remain consistent after subsampling to
prevent bin overlap (Methods and Extended Data Fig. 8c,d). A predic-
tion of this neural mapping s that the AAC population travels across the
statespace during vocalizationaccording to the current vocal acoustic
category, as previously described in human speech-production cir-
cuits?. We found that neural states can shift rapidly in correspondence
with changes in vocal categories (Extended Data Fig. 8e), consistent
with the notion that the AAC ensemble dynamically controls vocal
production.

Representation of vocal pitchin the AAC

The similarity in representation of vocal features across humans and
budgerigars prompted us to investigate whether additional structure
existsinthe AAC population activity. Human studies have revealed that
the speech motor cortex encodes vocal pitch®® (that is, fundamental
frequency). Budgerigars*®* and other parrot species (for example,
cockatiels*?) show excellent control of pitch, a parameter known tobe
related to syringeal tension*. To examine whether pitch is also explic-
itly represented in the AAC, we isolated vocalizations with a strong
harmonicstructure (Fig. 4aand Extended Data Fig. 9a) and estimated
the fundamental frequency of these vocal elements (Methods and
Extended Data Fig. 9a). Each bird exhibited an idiosyncratic distribu-
tion of pitches, broadly ranging from1to 5 kHz (Fig. 4b and Extended
Data Fig. 9b). We next re-examined the AAC neural state space and
found a highly structured representation related to the pitch of the
produced vocalization (Fig. 4c). In all birds tested, responses were
organized accordingto pitch, forming amonotonic gradient inneural
space (Fig.4c,d). We analysed this relationship by calculating a ‘neural
frequency axis’ (Extended Data Fig. 9¢) that traverses from low to high
frequencies (Fig. 4c,d). After projecting neural responses onto this
axis (Methods), we found that the vocal pitch in each bird seems to
be linearly distributed along the neural axis, whereas no relationship
isobserved in the shuffled data (Fig. 4e and Extended Data Fig. 9d) or
when a large temporal offset is added to the neural data (Extended
Data Fig. 9¢,f). Notably, the pitch of calls and warble syllables was
represented in a similar manner (Extended Data Fig. 9g), suggesting
ashared representation across both vocalization types. Our results
indicate that neural responses in the AAC form an accurate represen-
tation of vocal pitch.

Given our results at the population level, we further examined
whether single neurons in the AAC are tuned to vocal pitch. During
the production of a frequency-modulated element, we observed that
some AAC neurons changed their firingin an orderly manner, suggest-
ing that different AAC neurons may be tuned to specific pitch values
(Fig. 4f). To formalize this relationship, we calculated tuning curves
for each individual neuron by plotting the mean neural responses as
afunction of pitch. We found neurons demonstrating strong tuning
(Fig. 4g) as well as untuned neurons (Fig. 4g, bottom). Using a ‘tuning
index’ that measures modulation of neural response across frequencies
(Methods and Extended Data Fig.10a), we found 51% (112 out 0f 220) of
AAC neurons showed strong tuning for pitch (tuning index >6; Fig. 4h).
Different pitch-tuned neurons had maximal responses at different
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index (bottom) of the vocal elementsin a. Shading represents thresholds used
to classify acoustic categories (Methods), with green, red and blue denoting
low-frequency, harmonic and noisy types, respectively. ¢, Distribution of low-
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neural responses to vocalizations were mapped to a three-dimensional state
space using PCA, with each point denoting a neural state associated with vocal
production (Extended DataFig. 6a).In each column, neural states corresponding
toaspecificacoustic category are coloured the same asin c. Eachrow represents
datafromasingle budgerigar. PC, principal component. g, Cumulative
distribution of Euclidean distances between neural states within (solid line) or
between (dotted line) acoustic categories for each bird. ***P <107 (two-sided
Wilcoxon rank-sum test). See Extended Data Table 1for sample sizes and related
information for statistical tests.
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frequency values. For instance, some neurons were most responsive  frequencies with intermediate values (Fig. 4g, neuron (ii)). Consist-
when the bird produced low-frequency sounds (Fig. 4g, neuron (i)), entwith our previous result, we observed similar tuning profiles of
whereas others were tuned to high frequency (Fig. 4g, neuron (iii)) or ~ single neuronsacross both calls and warbles (Extended Data Fig.10b).

432 | Nature | Vol 640 | 10 April 2025



Across the population, pitch-tuned neurons had preferred frequencies
that seemed to tile the entirety of the behaviourally relevant range
(Fig. 4b,i and Extended Data Fig. 9b). To confirm that pitch is promi-
nently encoded by AAC neurons, we built a generalized linear model
(Methods) and found that pitch contributes significantly more than
otheracousticfactors (forexample, entropy; Extended Data Fig.10c).

As a last step, we trained a linear regression model to decode
time-varying pitch from the spiking activity of AAC neurons. Using
thisapproach, we attempted to predict the fundamental frequency of
vocal elements that were held out during the training process (Meth-
ods). Using just five neurons with the largest tuning index, we could
accurately predict pitch (Fig. 4j,k). By contrast, five untuned neurons
(thatis, lowest tuning index) did not enable any predictive power with
respect to this parameter (Fig. 4j,k). Aswe incorporated more neurons
intothe model, decoding accuracy increased (Fig. 4j-1). Furthermore,
decoders trained on warble syllables accurately predicted the pitch
of calls (Extended Data Fig. 10d), supporting the notion that pitch is
universally represented across vocal types in the AAC. This represen-
tation differs fundamentally from that observed in zebra finch RA, in
which single neurons donotrelate toa consistent pitch (Extended Data
Fig.11). Using decoders, we found no predictive value of the relation-
ship between pitch and RA neuron spiking in the zebra finch (n=7
birds, Pearson’s R =-0.02 + 0.20; Extended Data Fig. 12a) compared
with budgerigar AAC (n =4 birds, Pearson’s R=0.84 + 0.05; Extended
Data Fig. 12b). Taken together, our results confirm that AAC neurons
systematically represent vocal pitch and imply that the AAC can exert
precise control over this parameter.

Discussion

Weinvestigated the neural mechanisms that underlie the production of
flexible vocal elementsin the budgerigar and found a highly structured
representation of articulatory features at both single-cell and popula-
tion levels in the forebrain area AAC. This mapping between neural
population activity and vocal acoustics parallels the representation
of phonetic features in the human speech cortex**"® and probably
enablesbudgerigars to reuse and recombine existing neural solutions
to produce new sounds, facilitating flexible vocalization and enabling
rapid learning**.

Severallines of evidence support the notion that AAC neurons encode
parameters of the vocal musculature. First, we found contrasting neural
population signatures for aperiodic (or noisy) and harmonic vocaliza-
tions. These two types of vocalization are linked to distinct oscillatory
states of the avian vocal organ, the syrinx*. Although the anatomical
structure of the budgerigar syrinx has been investigated*®, further ex
vivo and modelling studies are needed to understand the syringeal
mechanisms involved in vocal production*. Animportant considera-
tion is that budgerigars and zebra finches exhibit key differences in
the structure and mechanisms of the syrinx. In the zebra finch, the
syrinx contains two sound sources*®, with each source independently
controlled by the vocal motor nucleus and RA on theipsilateral side**.
By contrast, the budgerigar syrinx contains a single sound source
which could be controlled by their vocal motor nucleus and the AAC
on both hemispheres'. Future research could investigate whether
these differences in anatomical organization may relate to the dis-
tinct coding schemes observed between RA and the AAC. Second, the
geometry and organization of the neural representation of vocaliza-
tions are highly consistent across individual birds (Figs. 3f and 4c,d).
Because each budgerigar has a distinct vocal repertoire™, our finding
ofa‘universal’ motor representationin the budgerigar forebrainindi-
cates that AAC neurons do not represent the individual vocalizations
per se, butinstead the underlying motor processes that generate those
vocalizations. We thus propose that AAC neurons uniquely encode the
acoustic outcome of motor commands using forebrain motor-control
strategies resembling those observed in the human speech cortex.

32,43
’

Future studies that simultaneously record AAC and syringeal muscle
activity*, together with pressure measurements of subsyringeal air
sacs®, can elucidate how AAC neurons coordinate breathing patterns
with muscle contraction during vocal production.

The moment-to-moment control of articulatory parameters that
we characterize in the budgerigar forebrain is fundamentally different
from that observed in other non-human species studied to date. An
important distinction can be made when comparing the budgerigar
withthe Bengalese finch (Lonchurastriatadomestica),in which changes
toRAactivity covary with song structure at specific moments*, a pro-
cess mediated by basal gangliainputs critical for vocal learning™. Asan
ensemble, however, the activity observed in RA” as well as vocal fore-
brainregions in rodents® and non-human primates® does not seem to
‘reuse’ premotor commands for similar articulatory parameters, which
suggests a distinct population code. Other vocal forebrain circuits
featuring volitional signals®" or information related to social context'®
also lack arepresentation of ongoing articulatory parameters. The
vocal motor map in the budgerigar brain therefore allows a unique
opportunity toinvestigate neural dynamics that functionally resemble
those engaged during human speech production at both the circuitand
cellular level. Differences still exist between these species, including the
presence of only weak auditory responses in primary vocal production
structures of the budgerigar (thatis, the AAC), in contrast to the strong
auditory responses observed in the human speech cortex®*. Never-
theless, our results introduce the budgerigar as an exciting model for
exploring mechanisms of vocal production and flexibility, and further
experimentsincorporating manipulationtechniques have the potential
toinfluence therapeutic approaches for arange of disorders that affect
speech motor control*?,

In this study, we demonstrate thatindividual neuronsin the budg-
erigar AAC represent motor commands with a distinct acoustic out-
come. Similar to the encoding of colour in the retina¥’, individual
AAC neurons seem to feature broad tuning curves that span a wide
frequency range (Fig.4i), enabling an accurate frequency representa-
tion at the population level. How these AAC neurons are engaged by
upstream structures remains poorly understood. The AAC receives
inputs from several forebrain areas, including the central nucleus of
thelateral nidopallium™?°, aregion lateral to the AAC, and two other
regions in the anterior forebrain'®, the oval nucleus of the anterior
mesopallium and the oval nucleus of the anterior nidopallium. Previ-
ousstudies using targeted lesions* or inactivation® suggest that these
two anterior areas are important for the production of frequency
modulation in budgerigar calls. It is not yet known whether one of
theseregions primarily controls the AAC song production circuit or
whether vocal production requires the coordinated activity of mul-
tiple upstream nuclei. Future investigations are needed to uncover
how these regions may perform functions that resemble higher-level
prefrontal areas involved in speech planning® and timing®. Taken
together, we reveal a previously undescribed vocal motor interface in
the budgerigar forebrain, raising the exciting possibility that features
relevant for speech production may be mechanistically examinedin
an animal model.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-025-08695-8.

1. Eichert, N., Papp, D., Mars, R. B. & Watkins, K. E. Mapping human laryngeal motor cortex
during vocalization. Cereb. Cortex 30, 6254-6269 (2020).

2. Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of
human sensorimotor cortex for speech articulation. Nature 495, 327-332 (2013).

Nature | Vol 640 | 10 April 2025 | 433


https://doi.org/10.1038/s41586-025-08695-8

Article

3.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. Encoding of articulatory
kinematic trajectories in human speech sensorimotor cortex. Neuron 98, 1042-1054
(2018).

Mugler, E. M. et al. Differential representation of articulatory gestures and phonemes in
precentral and inferior frontal gyri. J. Neurosci. 38, 9803-9813 (2018).

Lu, J. et al. Neural control of lexical tone production in human laryngeal motor cortex.
Nat. Commun. 14, 6917 (2023).

Dichter, B. K., Breshears, J. D., Leonard, M. K. & Chang, E. F. The control of vocal pitch in
human laryngeal motor cortex. Cell 174, 21-31(2018).

Leonardo, A. & Fee, M. S. Ensemble coding of vocal controlin birdsong. J. Neurosci. 25,
652-661(2005).

Banerjee, A., Chen, F., Druckmann, S. & Long, M. A. Temporal scaling of motor cortical
dynamics reveals hierarchical control of vocal production. Nat. Neurosci. 27, 527-535
(2024).

Zhao, L. & Wang, X. Frontal cortex activity during the production of diverse social
communication calls in marmoset monkeys. Nat. Commun. 14, 6634 (2023).

Rose, M. C., Styr, B., Schmid, T. A., Elie, J. E. & Yartsev, M. M. Cortical representation of
group social communication in bats. Science 374, eaba9584 (2021).

Hage, S. R. & Nieder, A. Single neurons in monkey prefrontal cortex encode volitional
initiation of vocalizations. Nat. Commun. 4, 2409 (2013).

Farabaugh, S. M., Brown, E. D. & Dooling, R. J. Analysis of warble song of the budgerigar
Melopsittacus undulatus. Bioacoustics 4, 111-130 (1992).

Zhao, Z. et al. Anterior forebrain pathway in parrots is necessary for producing learned
vocalizations with individual signatures. Curr. Biol. 33, 5415-5426 (2023).

Hile, A. G., Plummer, T. K. & Striedter, G. F. Male vocal imitation produces call convergence
during pair bonding in budgerigars, Melopsittacus undulatus. Anim. Behav. 59, 1209-1218
(2000).

Moussaoui, B., Overcashier, S. L., Kohn, G. M., Araya-Salas, M. & Wright, T. F. Evidence for
maintenance of key components of vocal learning in ageing budgerigars despite
diminished affiliative social interaction. Proc. R. Soc. B 290, 20230365 (2023).

Lavenex, P. B. Vocal production mechanisms in the budgerigar (Melopsittacus undulatus):
the presence and implications of amplitude modulation. J. Acoust. Soc. Am. 106, 491-505
(1999).

Egger, R. et al. Local axonal conduction shapes the spatiotemporal properties of neural
sequences. Cell 183, 537-548 (2020).

Durand, S. E., Heaton, J. T., Amateau, S. K. & Brauth, S. E. Vocal control pathways through
the anterior forebrain of a parrot (Melopsittacus undulatus). J. Comp. Neurol. 377,179-206
(1997).

Paton, J. A., Manogue, K. R. & Nottebohm, F. Bilateral organization of the vocal control
pathway in the budgerigar, Melopsittacus undulatus. J. Neurosci. 1, 1279-1288
(1981).

Striedter, G. F. The vocal control pathways in budgerigars differ from those in songbirds.
J. Comp. Neurol. 343, 35-56 (1994).

Castellucci, G. A., Guenther, F. H. & Long, M. A. A theoretical framework for human and
nonhuman vocal interaction. Annu. Rev. Neurosci. 45, 295-316 (2022).

Utianski, R. L. et al. Prosodic and phonetic subtypes of primary progressive apraxia of
speech. Brain Lang. 184, 54-65 (2018).

Guenther, F. H. Neural Control of Speech (MIT Press, 2016).

Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA
112, 2871-2875 (2015).

Dronkers, N. F. A new brain region for coordinating speech articulation. Nature 384,
159-161(1996).

Khanna, A. R. et al. Single-neuronal elements of speech production in humans. Nature
626, 603-610 (2024).

Zann, R. A. The Zebra Finch: a Synthesis of Field and Laboratory Studies (Oxford Univ. Press,
1996).

Farabaugh, S. M., Linzenbold, A. & Dooling, R. J. Vocal plasticity in budgerigars
(Melopsittacus undulatus): evidence for social factors in the learning of contact calls.

J. Comp. Psychol. 108, 81-92 (1994).

Tu, H. W. & Dooling, R. J. Perception of warble song in budgerigars (Melopsittacus
undulatus): evidence for special processing. Anim. Cogn. 15, 1151-1159 (2012).

Simpson, H. B. & Vicario, D. S. Brain pathways for learned and unlearned vocalizations
differ in zebra finches. J. Neurosci. 10, 1541-1556 (1990).

Yu, A. C. & Margoliash, D. Temporal hierarchical control of singing in birds. Science 273,
1871-1875 (1996).

Heaton, J. T. & Brauth, S. E. Effects of lesions of the central nucleus of the anterior
archistriatum on contact call and warble song production in the budgerigar
(Melopsittacus undulatus). Neurobiol. Learn. Mem. 73, 207-242 (2000).

Plummer, T. K. & Striedter, G. F. Auditory responses in the vocal motor system of
budgerigars. J. Neurobiol. 42, 79-94 (2000).

434 | Nature | Vol 640 | 10 April 2025

34. Elmaleh, M., Kranz, D., Asensio, A. C., Moll, F. W. & Long, M. A. Sleep replay reveals
premotor circuit structure for a skilled behavior. Neuron 109, 3851-3861(2021).

35. Chi, Z. & Margoliash, D. Temporal precision and temporal drift in brain and behavior of
zebra finch song. Neuron 32, 899-910 (2001).

36. Chettih, S. N., Mackevicius, E. L., Hale, S. & Aronov, D. Barcoding of episodic memories in
the hippocampus of a food-caching bird. Cell 187, 1922-1935 (2024).

37. Schneidman, E., Bialek, W. & Berry, M. J. 2nd Synergy, redundancy, and independence in
population codes. J. Neurosci. 23, 11539-11553 (2003).

38. Mugler, E. M. et al. Direct classification of all American English phonemes using signals
from functional speech motor cortex. J. Neural Eng. 11, 035015 (2014).

39. Mann, D. C., Fitch, W. T, Tu, H. W. & Hoeschele, M. Universal principles underlying
segmental structures in parrot song and human speech. Sci. Rep. 11, 776 (2021).

40. Manabe, K., Kawashima, T. & Staddon, J. E. Differential vocalization in budgerigars:
towards an experimental analysis of naming. J. Exp. Anal. Behav. 63, 111-126 (1995).

41. Manabe, K., Staddon, J. E. R. & Cleaveland, J. M. Control of vocal repertoire by reward in
budgerigars (Melopsittacus undulatus). J. Comp. Psychol. 111, 50-62 (1997).

42. Seki, Y. Cockatiels sing human music in synchrony with a playback of the melody.

PLoS ONE 16, €0256613 (2021).

43. Brauth, S.E., Heaton, J. T, Shea, S. D., Durand, S. E. & Hall, W. S. Functional anatomy of
forebrain vocal control pathways in the budgerigar (Melopsittacus undulatus). Ann. NY
Acad. Sci. 807, 368-385 (1997).

44. Moore, B. R. The evolution of learning. Biol. Rev. Camb. Philos. Soc. 79, 301-335 (2004).

45. Fee, M. S., Shraiman, B., Pesaran, B. & Mitra, P. P. The role of nonlinear dynamics of the
syrinx in the vocalizations of a songbird. Nature 395, 67-71 (1998).

46. Abdel-Maksoud, F. M., Hussein, M. M., Hamdy, A. & Ibrahim, I. A. Anatomical, histological,
and electron microscopic structures of syrinx in male budgerigars (Melopsittacus
undulatus). Microsc. Microanal. 26, 1226-1235 (2020).

47. Elemans, C. P. et al. Universal mechanisms of sound production and control in birds and
mammals. Nat. Commun. 6, 8978 (2015).

48. Suthers, R. A., Goller, F. & Pytte, C. The neuromuscular control of birdsong. Philos. Trans.
R Soc. Lond. B 354, 927-939 (1999).

49. Wild, J. M. Neural pathways for the control of birdsong production. J. Neurobiol. 33,
653-670 (1997).

50. Manogue, K. R. & Nottebohm, F. Relation of medullary motor nuclei to nerves supplying
the vocal tract of the budgerigar (Melopsittacus undulatus). J. Comp. Neurol. 204,
384-391(1982).

51.  Farabaugh, S. M. & Dooling, R. J. in Ecology and Evolution of Acoustic Communication in
Birds (eds Kroodsma, D. E. & Miller, E. H.) Ch. 6 (Cornell Univ. Press, 1996).

52. Gaunt, A.S. & Gaunt, S. L. L. Electromyographic studies of the syrinx in parrots (Aves,
Psittacidae). Zoomorphology 105, 1-11 (1985).

53. Suthers, R. A., Goller, F. & Wild, J. M. Somatosensory feedback modulates the respiratory
motor program of crystallized birdsong. Proc. Natl Acad. Sci. USA 99, 5680-5685 (2002).

54. Sober, S. J., Wohlgemuth, M. J. & Brainard, M. S. Central contributions to acoustic variation
in birdsong. J. Neurosci. 28, 1037010379 (2008).

55. Bottjer, S. W., Miesner, E. A. & Arnold, A. P. Forebrain lesions disrupt development but not
maintenance of song in passerine birds. Science 224, 901-903 (1984).

56. Cheung, C., Hamiton, L. S., Johnson, K. & Chang, E. F. The auditory representation of
speech sounds in human motor cortex. eLife 5, €12577 (2016).

57. Solomon, S. G. & Lennie, P. The machinery of colour vision. Nat. Rev. Neurosci. 8, 276-286
(2007).

58. Castellucci, G. A., Kovach, C. K., Howard, M. A. 3rd, Greenlee, J. D. W. & Long, M. A. A speech
planning network for interactive language use. Nature 602, 117-122 (2022).

59. Long, M. A. et al. Functional segregation of cortical regions underlying speech timing and
articulation. Neuron 89, 1187-1193 (2016).

60. Hozhabri et al. Differential behavioral engagement of inhibitory interneuron subtypes in
the zebra finch brain. Neuron https://doi.org/10.1016/j.neuron.2024.11.003 (2024).

61. Moll, F. W. et al. Thalamus drives vocal onsets in the zebra finch courtship song. Nature
616, 132-136 (2023).

62. Stringer, C. et al. Rastermap: a discovery method for neural population recordings.

Nat. Neurosci. 28, 201-212 (2025).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2025


https://doi.org/10.1016/j.neuron.2024.11.003

Methods

Animals

We used adult (>240 days after hatch) male budgerigars (M. undulatus)
andadult (>90 days after hatch) male zebrafinches (T. guttata) obtained
fromexternal breeders. The number of budgerigars was selected onthe
basis of previously published electrophysiological studies in birds'**¢,
All birds were maintained in a temperature- and humidity-controlled
environment with a 12-h light/12-h dark schedule. All animal main-
tenance and experimental procedures conformed to the guidelines
established by the Institutional Animal Care and Use Commiittee at
the New York University Langone Medical Center.

Surgical procedures
Allsurgical procedures were performed under anaesthesia (1-3% iso-
flurane in oxygen) following established guidelines. We used similar
approaches for implanting high-density silicon probes as those pre-
viously used by our group>*%3, In brief, Dil (V22885, Thermo Fisher
Scientific) was applied to probe shanks using a soft brush. The probe
was then implanted into the target region by using stereotaxic coor-
dinates relative to the bifurcation of the sagittal sinus. For recordings
in budgerigars, we positioned the beak bar 17° down from horizon-
tal and inserted the probe vertically. At this angle, the AAC coordi-
nates were 5-6 mm lateral and 5-6 mm anterior. All AAC recordings
were performed in the left hemisphere and in the dorsal subdivision
of the AAC®* (Extended Data Fig. 2b). A piezoelectric microphone
(BU-33356-000, Knowles) was cemented to the skull overlying the
right hemisphere using dental acrylic®*. A ground wire was inserted
under the skull approximately 3 mm posterior to the craniotomy site
for the AAC. Throughout the implantation process, we continuously
monitored electrical activity across all channels using the Intan record-
ing system (RHD 1024ch Recording Controller and RHX data acquisi-
tion software, Intan Technologies). After successful identification of
the AAC (depth: 3-3.6 mm), silicon elastomer (Kwik-Cast, WPI) was
applied to the craniotomy. Our electrodes covered a spatial range of
450 pm anterior-posteriorand 300 pm dorsal-ventral, enabling usto
record fromasubstantial portion ofthe AAC (diameter: approximately
900 pm). After the recordings were completed, electrode positions
were confirmed through histology (Extended Data Fig. 2a,b).
Recordings from zebra finch RAwere collected as part of previously
published studies by our group®**. RA was located at 2.35 mm lateral
and 0.1 mm posterior from the bifurcation of the superior sagittal sinus
and 2.5-3.0 mm below the brain surface. RAs of both hemispheres
were recorded in four zebra finches (ZF1-ZF4) and data were com-
bined across hemispheresinthese cases®. In the remaining three zebra
finches (ZF5-ZF7), only RA of the right hemisphere was recorded**.

Silicon probe and behavioural recordings

All AAC data were recorded in chronically implanted, freely mov-
ing budgerigars using integrated 128-channel high-density silicon
probes (128-5, Diagnostic Biochips). Before implantation, a coated
stainless-steel ground wire (0.0254-mm thickness, A-M Systems) was
soldered to the reference contact of the headstage of the probe. The
headstage was then secured in a customized protective casing made
in-house using a 3D printer (Formlabs). Finally, the base of the shanks
ofthe probe was fixed to a custom-designed microdrive by super glue
(Loctite).

Chronic silicon probe recordings of budgerigars were performed
inanarenain a sound-isolation chamber. The arena consisted of two
conjoined cylindrical cages (Extended Data Fig.13a) separated by aclear
acrylicsheet. After probeimplantation, the budgerigar was allowed to
recover from anaesthesia and then putinto one half of the arena, with
four other familiar budgerigars housed in the other half, an arrange-
ment that stimulated vocal productioninrecorded birds. We addition-
ally supplemented the social environment with low-amplitude audio

playback of budgerigar vocalizations through a nearby speaker®. Budg-
erigar vocalizations were recorded using a piezoelectric microphone
(BU-33356-000, Knowles), which conducted sounds through the skull
and provided high-quality and highly selective vocal signals with little
contamination from environmental sounds®* (Extended DataFig.13b).

We continuously recorded neural activity and vocalizations from
the birdimmediately after being placed in the arena. Neural and piezo-
electric signals were transmitted to the Intan recording system (RHD
512ch Recording Controller, Intan Technologies) through an assisted
electrical commutator (Doric Lenses), which facilitates free movement
of the bird. Audio signals from both the piezoelectric and ambient
microphones (AT803, Audio-Technica) were amplified by an analog
preamplifier (TPSII, ART ProAudio) before being sent to the Intan con-
troller. Alldata were sampled at 30 kHz. Playback experiments through
anearby speaker were performed on two budgerigars (BG3 and BG4).
Three calls and three warble segments (duration: approximately 1s)
fromthe repertoire of the bird were played back during non-vocal peri-
ods. Each audio stimulus was played ten timesinarandomized order.

Details pertaining torecording proceduresinzebrafinches have been
described elsewhere***. Data from one zebra finch (ZF1) were collected
acutely fromabird trained to sing while head-fixed®. In this bird, neural
activity fromRA was collected using a 64-channelsilicon probe (64-H,
probe obtained fromS. Masmanidis). For all other zebrafinches, neural
recordings were performed chronically using the same 128-channel
probes as used in budgerigar recordings. Vocalizations were elicited
by female finches placed in aneighbouring cage and recorded using an
omnidirectional microphone (AT803, Audio-Technica). To directly com-
pare vocalizations of zebrafinches with those of budgerigars (Fig. 1c-f),
weimplanted a piezoelectric microphone (BU-33356-000, Knowles) in
asingle zebrafinch. After the surgery, the bird was placed inacage on
oneside of thearenawhileacage onthe other side housed two female
zebrafinches to elicit songs from the implanted bird.

Histology

After recording, birds were perfused transcardially with PBS followed
by 4% paraformaldehyde. Probes were lifted from the brain using the
microdrive, and brains were extracted and left overnight in paraform-
aldehyde. Subsequently, the brains were sliced at athickness of 100 pm
using a vibrating microtome (VT1200S, Leica). Slices were mounted
using Vectashield mounting medium (Vector Laboratories) and imaged
with aslide scanner (VS120, Olympus) using the OlyVIA software.

Data analysis

Detection of vocalizations. For each budgerigar, we analysed data
fromthe first day that birds produced warble songs following electrode
implantation. Two budgerigars sang on the same day as the surgery,
whereas the other birdsinitiated singing after one or two days. For each
bird, we examined the initial period of audio recording containing at
least 5 min of cumulative vocalizations, including both calls and warble
songs but excluding the silent gaps between them. One of the four
birds (BG2) vocalized less than 5 min during the recording session, so
we analysed the entire audio recording.

Budgerigar vocalizations were detected using spectral features.
Audio signals were first high-pass filtered (250 Hz) and then converted
into spectrograms using the short-time Fourier transform (window size:
8.5ms, step size:1 ms). For each momentinthe sonogram, a3-msanaly-
siswindow was evaluated; vocalizations were distinguished fromsilent
periods by aminimum set of 50 continuous spectrotemporal samples
exceedingathreshold. Consecutive time points were thengroupedinto
intervals as putative vocal periods and sounds with durations shorter
than 2 ms were discarded as non-vocal. We then manually removed
any false-positive sounds (for example, originating from mechanical
noise). After this process, each sound was defined as a single vocal ele-
ment, and warble songs were defined as vocal sequences comprising
aminimum ofthree vocal elements separated by silent periods of less
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than1s (ref. 65). The remaining vocal elements were classified as calls.
For zebra finches, identities of vocalizations (that s, call 1, syllable A,
and so on) were annotated manually>*°',

Comparison of vocal repertoires across species. We compared vocal
repertories between the zebra finch and budgerigar (Fig. 1c-f) using
vocalizations recorded by piezoelectric microphones. For this analysis,
additionalinstances of three budgerigar call types wereincluded from
anindependentrecording session toincrease the totalnumber of trials.
For the human speech analysis, datawere taken from the Switchboard-1
Telephone Speech Corpus (session ID: sw02012B)*¢, which totalled 755
words spoken by anadult male English speaker using annotations pro-
vided by The Institute for Signal and Information Processing (https://
isip.piconepress.com/projects/switchboard/).

For this initial analysis (Fig. 1b,d,f), dimensionality reduction tech-
niques were applied to analyse the spectral structure of vocalizations
from all species®. Background noise in each spectrogram was sup-
pressed by applying a threshold set at 60% of the range of spectral
energy. Spectrograms were then standardized to a uniform length of
300 ms through zero padding, after which they were projected into a
25-dimensional space using PCA. For visualization, t-SNE was used to
embed each 25-dimensional vocal element using a perplexity param-
eter of 30.

We also quantified three acoustic features for each vocal element:
duration, mean pitch and entropy variance (Extended Data Fig.1). Mean
pitch and entropy variance were calculated on the basis of pitch and
entropy estimations using Sound Analysis Pro (SAP)¥’.

Quantification of vocal-related neuronal activity. Spike sorting was
performed usingKilosort®® and sorted clusters were further manually
curated using Phy® on the basis of criteria including interspike inter-
vals, auto-correlogram, cross-correlogram and waveformshape, aswe
had previously done in the zebra finch'**¢3, Two metrics, mean firing
rates and bursting ratios, were used to assess neuronal responses to
vocalizations. The mean firing rate for each neuron was computed
as the total number of spikes divided by the total duration of specific
time intervals. The bursting ratio was defined as the percentage of
time agiven neuron exhibited bursting activity. To quantify bursting,
spiking patterns were first converted into instantaneous firing rates
atal-msresolution by using the inverse of the interspike interval that
immediately surrounds each time point’. Bursting was then defined as
instantaneous firing rates exceeding a designated threshold (100 Hz
for zebra finch RA**** and 200 Hz for budgerigar AAC) on the basis of
thedistribution of interspike intervals (Extended Data Fig. 3h). These
metrics were computed for both vocalizationintervals (calls and song
syllables) and for 10 s of baseline periods during which birds exhibited
vocal quiescence.

To investigate the temporal relationship between AAC activity and
vocal boundaries, we aligned the activity of each neuron to the onset
of vocal elements that are preceded by a silent gap of at least 100 ms
(Extended Data Fig. 3b). Furthermore, we aligned AAC activity with
the end of vocal elements that are followed by a silent gap of at least
100 ms (Extended Data Fig. 3c).

For each neuron, sparseness’® of its vocal activity was defined as

- Iz[ ’ 4 ’?E
Sparseness = Z T Z T 0

t=1 t=1

where R, was the instantaneous firing rate to the tth time pointand T
represented the summed durationinmillisecond across vocal elements.
Smaller sparseness is associated with more sparse neural activity.

Spectral and neural similarity analyses. We compared spectral and
neural similarity between vocal elements. For zebra finches, all song

syllables were included. For budgerigars, 50 syllables were randomly
sampled from the pool of song syllables with durations longer than
100 ms. Any repeated syllables were then removed, leading to 38, 50,
43 and 45 unique warble syllables for each bird for subsequent analy-
sis. This selection process was adopted only for this specific analysis
(Fig.2i,j). For each possible pair of syllablesin each bird, spectrograms
were segmented using a20 ms sliding window with a step size of 10 ms.
Pearson correlations were computed between spectral segments of two
syllables to generate the spectral similarity matrix. A neural similarity
matrix was calculated using segments of population neural activity
(thatis, z-scored instantaneous firing rates) during production of the
two syllables. For each neuron, the instantaneous firing rates were
converted to z-score using the mean and standard deviation of the fir-
ing rates across vocal elements. Neural activity was shifted forward by
12 ms before calculating similarity to account for vocal motor delay’.
To quantify the relationship between spectral and neural structures,
similarity matrices from all pairs of syllables were flattened and con-
catenated into a vector. Next, a Spearman correlation was performed
between the concatenated spectral and neural similarity vectors.

To quantify similarity across renditions of the same vocal element,
we analysed a dataset of zebra finch vocalizations recorded using the
same piezoelectric microphone as for the budgerigars (BU-33356-000,
Knowles; Extended Data Fig. 4a-c). We selected ten renditions of the
four syllables produced by the zebra finch and segmented each syllable
using identical parameters to those applied to the budgerigars (that
is,20-mssliding window with a step size of 10 ms) and then calculated
the correlation between all different renditions of the same segment,
aswell asthe correlation between different segments across syllables.

Acoustic categorization of vocalizations. Acoustic properties of
vocal elements were characterized by a low-frequency ratio and
harmonicindex. For every vocal time point (resolution: 1 ms), the
low-frequency ratio was calculated as the logarithm of the ratio bet-
ween mean spectral power below 700 Hz and that between 700 and
7,000 Hz. These two bands were chosen according to the fact that
low-frequency syllables exhibit afundamental frequency below 700 Hz
(Extended Data Fig. 5a), whereas other syllables have fundamental
frequencies exceeding this threshold and below 7,000 Hz (Extended
Data Fig. 9b). The harmonic index was defined as HR x FI, where HR
quantified theratio of spectral energy that was harmonic and was cal-
culated using the ‘harmonicRatio’ functionin MATLAB (https://www.
mathworks.com/help/audio/ref/harmonicratio.html; MATLAB Audio
Toolbox, R2023a, Mathworks). FI, which represents the prominence of
afundamental frequency, was derived by first estimating the funda-
mental frequency of all vocalizations using SAP®”. Mean spectral power
was then computed for afundamental band (400 Hz centred around
the estimated fundamental frequency) and a nonfundamental band
(400 Hz centred around 1.5 or 0.67 times the fundamental frequency
for fundamental frequencies below or above 4.5 kHz, respectively).
Flwas then defined as the logarithm of the ratio between the mean
spectral power of the two bands. Fl was normalized to [0, 1] before
calculating the harmonicindex.

Vocal time points with low-frequency ratios above 1 were classified as
low-frequency sounds. The remaining vocalizations were considered
to have normal frequencies and displayed abimodal distributionin the
harmonicindex (Fig.3c). Vocal time points that fell in the bottom 20%
and top 30% of harmonicindices pooled across birds were labelled as
‘noisy’ and ‘harmonic’ sounds, respectively, while those between the
30th and 50th percentiles were designated as ‘mixed’ sounds. To avoid
the inclusion of short silent gaps in vocal elements, time intervals in
any acoustic category with durations <4 ms were excluded.

Neural mapping of acoustic categories. To characterize single-neuron
responses to the three acoustic categories, we defined a selectivity
indexforeach category (Extended DataFig. 5) as: (R.,; = Ruase)/ (Reac + Rbase)
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where R, was the mean response of each neuron to the category stud-
ied and R, is the baseline firing rate of each neuron.

For population-level analyses, an N-dimensional (V: number of neu-
rons) vector was computed by calculating the firing rate of each neuron
during a window from =30 to -5 ms to each 1 ms time point during
vocalization. These N-dimensional vectors were then organized into an
M x Nneural response matrix, where Mrepresented the total number of
vocal time points. PCA was applied to the matrix, through which each
N-dimensional neural vector was mapped into a three-dimensional
neural space (Extended DataFig. 6a) and then colour coded according
to the corresponding acoustic categories. Eigenvalues and explained
variances of the principal components (PCs) were examined to deter-
mine the contribution of each PC (Extended Data Fig. 6b).

To quantify the relationship between neural state and the harmonic
index, we build linear regression models associating neural PC scores
with the harmonicindex:

N
he =B, + Z Bsit (2)
i=1

where h,was the harmonicindexat each time point ¢ (resolution:1 ms),
s was the score of the population response on the ith PC, and §3,, ...,
Pywereregression coefficients to be estimated, with Nbeing the total
number of PCs. For each budgerigar, the model was fitted on half of
the data and tested on the other half. Model performance was evalu-
ated by R%

Z (Ht_ht)z
RP=1-St—— = 3
S (H-H)? (3)

where H,was the observed harmonicindex, h,was the predicted index,
and H was the mean of the observed index.

For computational efficiency, distance between neural states within
and across categories were calculated on the basis of the first three
PCs. Two control analyses were performed to exclude the possibility
that the smaller neural distance within categories was owing to the
binning procedure. We performed a permutation analysis (Extended
Data Fig. 8b). In each permutation, we shifted the spike train of each
neuronby arandom time between 100 and 500 ms. We then calculated
the neural response distances within and between different acoustic
categories onthe basis of the same binning process mentioned above.
We defined the statistic AD as the difference between the mean dis-
tance of neural responses between categories and within categories:
AD=mean (between-category distance) - mean (within-category dis-
tance). A larger AD indicates greater similarity in neural responses
within categories compared with between categories. To generate a
null distribution, we repeated the permutation process 1,000 times.
We then calculated AD from the original unshuffled data.

Moreover, we performed a subsampling of the vocal time points,
selecting those that were at least 25 ms apart to ensure that no
N-dimensional neural vectors contained overlapping spikes. We then
recalculated the neural distances within and between categories
(Extended DataFig. 8c,d).

Comparison of vocalizations across individual budgerigars. To
comparethe vocal repertoires of the four budgerigars, we first stand-
ardized each vocal element (including both calls and warbles) into
spectrograms with afixed duration of 125 ms. Vocal elements exceeding
this length were segmented into 125-ms components using a sliding
window with astep size of 5 ms. We then used amachine-learning-based
algorithm, the variational autoencoder provided by the Autoencoded
Vocal Analysis toolbox™, to represent each vocal element by latent
features™. These latent representations were subsequently embedded
into alow-dimensional space using uniform manifold approximation
and projection (UMAP; Extended DataFig. 7).

Neural mapping of vocal pitch. For each budgerigar, vocalizations for
which the fundamental frequency could be estimated reliably were iso-
lated using the median as a threshold for the harmonicindex (Extended
DataFig. 9a). All of the subsequent analyses were done on the basis of
this set of frequency-tagged time periods. Pitch was estimated using
SAP¥. To visualize the representation of pitch in the neural ensemble,
responses to these vocal time points were colour coded by the associ-
ated pitchin the two-dimensional PC space.

We quantified the geometry of the neural representation of pitch
in the full-dimensional PC space. To avoid double dipping, all neural
responses were first evenly split into odd and even halves (Extended
DataFig.9c). Inthefirst half, a neural frequency axis was computed by
calculating the vector between the mean neural responses to the top
50% and bottom 50% of pitches. Neural responses from the second
halfwere then projected onto this neural frequency axis using the dot
product of these two vectors. The relationship between pitchand neural
projections was measured by computing the mean pitch in a series of
neural projection bins (binsize: 3). For reliability, only bins containing
more than 20 samples were included.

A control analysis was performed by randomly shuffling the pitch
values (Fig. 4e) across vocalizations followed by the calculation of
the neural frequency axis described above. This shuffling process
was repeated 5,000 times. For each shuffled sample, the slope of the
relationship between mean pitch and neural projection was deter-
mined by fitting alinear model between the two variables. The distri-
bution of slopes obtained from the shuffled data was then compared
with the slope derived from the unshuffled data (Extended Data
Fig.9d).

We also investigated the neural representation of pitch using two
windows (-125 to -100 ms and 100 to 125 ms), which were signifi-
cantly shifted from our original window (=30 to -5 ms; Extended Data
Fig.9e,f). For these three representations, we evaluated the extent to
which pitch could be predicted on the basis of PC1 and PC2. Specifi-
cally, for each point on the two-dimensional neural map, we trained
alinear regression model using all remaining data points to associate
the coordinates of PC1and PC2 with pitch. This model was then used to
predict the pitch value of the left-out point. The squared error between
the actual and predicted pitch values was used as a measure of model
performance.

Single-neuron tuning to vocal pitch. For a given neuron, activity
(firing rates over awindow from -30 to -5 ms) to different pitch bins
(binsize: 200 Hz) were averaged within the bin to obtain a tuning curve
(Fig.4g).Bins containing fewer than 20 samples were notincluded. To
quantify the strength of tuning, mean neural responses were first cal-
culated for four pitchranges (1-2 kHz, 2-3 kHz, 3-4 kHzand 4-5 kHz).
Atuning index (Fig. 4h) was defined as the range of the four neural
responses divided by the square root of the mean response to all pitches
(Extended DataFig.10a).

To evaluate the relative contributions of pitch and other acoustic
features to neuronal responses in the AAC, we performed a general-
ized linear modelling (GLM) analysis. For each neuron, we modelled
responses to all vocal time points (1-ms resolution) using a Poisson
GLM with an exponential link function. The four predictors included
inthe model are pitch, entropy, amplitude and frequency modulation.
To test the significance of model fitting, we calculated the likelihood
ratio test statistic:

A=-2x (fnull - medEI) (4)

where 4,4 Was the log-likelihood of the full model and £, ,; was the
log-likelihood of a null model in which no predictors were included.
We then shuffled the neural responses 1,000 times and calculated a
null distribution of A. The model fitting is considered significant only
when Ais larger than the 99th percentile of its null distribution.
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For all neurons with a significant GLM model fitting, we calculated
the relative contribution of each predictor (Extended Data Fig. 10c)
MR%i 4 MR},J
, Z _ ’
MR% J=1 MR
where MR} was the McFadden’s R* for the full model and MRj’i repre-
sented the McFadden'’s R for a partial model with the ith predictor

excluded.

usinga previously described”>” equation: | 1 -

Neural decoding of vocal pitch. Any vocal elements containing
frequency-tagged periods were included in the decoding analysis. A
leave-one-out approach™ was used for training and predicting pitch.
Assuming there were V qualified vocal elements, for each of them,
population responses to the remaining V-1 vocal elements were used
tobuild alinear regression model:

N
£= Byt Y Bxr ®)
i=1

where f, was the fundamental frequency at a frequency-tagged time
point ¢ (resolution: 1 ms), r, was the firing rate of the ith neuron over
thetime window of t-30 to t-5msand f3,, ..., By were regression coeffi-
cients to be estimated, with Nbeing the number of neurons. This model
wasthenapplied tothe neural responses to the held-out vocal element
to predict fundamental frequency.

Various populations of neurons were used to compare decoding
performance, which was quantified by R*

2
R*=1- Z‘LJE)Z (6)
2 (R=F)
where F,was the observed pitch, f, was the predicted pitch, and F was
the mean of the observed pitch.

To investigate whether warble syllables and calls are represented
similarlyinthe AAC population, we performed an extra decoding analy-
sisin which the linear model was trained on warble syllables only and
then used to decode pitch of calls (Extended Data Fig. 10d).

Pitch representation in zebra finch RA. We examined pitch represen-
tation in RA at both the single-neuron and population level. For each
RA neuron, all burst events occurring during song production were
identified (Extended Data Fig. 11c). These burst intervals were then
adjusted by amotor delay (12 ms) to determine the corresponding
vocal intervals, from which mean pitch values were extracted. These
burst-associated pitch values were then plotted across the whole popu-
lation (Extended DataFig.11d). For each neuron, we calculated the mean
and variance of its burst-associated pitch values. Arandom sample of
pitch values, matching the number of burst-associated values, was
drawnfromtherest of the population to establish anull distribution for
the mean and variance of burst-associated pitch. Moreover, we plotted
the relationship between firing rates (measuredin awindow of -30 to
-5ms) and pitch values across syllables, calls and introductory notes
inthe vocal repertoire of a zebra finch.

Atthe populationlevel, we performed pitch decoding similar to the
approach used with the budgerigar. Specifically, for each song syllable,
alinear decoder (as described by equation (5)) was trained to associate
RA neuron firing rates with the pitch of the remaining syllables. This
decoder was then used to predict the pitch of the withheld syllable
(Extended DataFig.12a).

Statistics. Nonparametric statistical tests (for example, Wilcoxon
rank-sum and permutation tests) were performed without assump-
tions regarding data distribution. In Fig. 41, for which the sample size

is small (n =4), a parametric test was adopted. Exact P values, sample
sizes and other information for each statistical test are detailed in Ex-
tended Data Tablel.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.
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Article

a Cc

Zebra finch
Peak to peak:422 pv

Budgerigar

ISI violation:0.0003%

Peak to peak:390 uV
0.0

ISI violation:0.01%

300 4
0.06
.9 > 0 2
%0 £ © 0.02
% 0.02 =
-500 -500 0
2 -20 -10 0 10 20 0 0.6 1.2 20 -10 0 10 20
Lag (ms) ms Lag (ms)
9 . iolation:0.029
Peak to peak:284 uVv 0.06 IS| violation:0.02% 30 eak to peak:273 pVvV 006 ISI violation:0.02%
20 0 © 0.04
® 2 ©
© 0.02 © 0.02
-500 -500 0
2 -20 -10 0 10 20 0 0.6 1.2 20 -10 0 10 20
Lag (ms) ms Lag (ms)
0.5 mm Peak to peak:205 pVv 003 ISI violation:0.01% 300 Peak to peak:195 uV 0.04 IS| violation:0.004%
© 002 0 2
] = T 0.02
* 0.01 «
-500 0 -500 0
2 -20 -10 0 10 20 0 0.6 1.2 20 -10 0 10 20
ms Lag (ms) ms Lag (ms)
9 - iolation:0.029
Peak to peak:156 uVv 0.06 ISI violation:0.04% 300 Peak to peak:132 pv 0.04 ISI violation:0.02%
b Budgerigar
20 0 k)
g 2 5 002
-500 -500 0
y { 2 -20 -10 0 10 20 0 0.6 1.2 20 -10 0 10 20
Lag (ms) ms Lag (ms)
d 25 e g
20 60 —
€15 €
3 3 40
O 10 O
5 20
0 0 - =1 1 1 1
\ 2 mm 1 mm 100 200 300 400 500 600 0 0.5 1 1.5 2

Extended DataFig.2 | Histology and single unit quality. a, Histological
validation of silicon probe placementin zebra finch RA. Left, sagittal slice
illustrating probe position, marked by Dil applied to the probe shank (red).
Right, expanded view of the boxed region highlighting RA (white arrows) on the
right. b, Histological validation of silicon probe placementin budgerigar AAC.
Left, brightfield image of a coronal slice showing the position of the silicon
probe, marked by Dil applied to the probe shank (red). Right, expanded view of
the boxedregionindicating dorsal AAC (AACd) and ventral AAC (AACv) by
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white and yellow arrows, respectively. ¢, Example single-unit waveforms and
autocorrelograms from budgerigar AAC recordings. Mean waveforms (red) are
overlaid onsingle-trialwaveformtraces, whicharerepresented as gray lines. In
theautocorrelogram, orange vertical linesindicate the refractory period (-1to
1ms).d, e, Distributions of peak-to-peak amplitude (d) and the percentage of
refractory period violations (e) across all AAC single units (n = 220 from 4 birds).
lllustrations of the zebrafinchinaare reproduced fromref. 60, Elsevier.
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Extended DataFig. 3| Vocal motorresponsesin AACand RA. a, Meanfiring
rates of AAC neurons during vocalization and baseline for eachindividual
budgerigar. Exact p-values displayed within each plot are from two-sided
Wilcoxonsigned-ranktests (n =49, 81,43,47 neurons for each plot). b, Population-
averagedresponsesaligned to the onset of vocal elements that are preceded by
asilentgap of atleast 100 ms. ¢, Population-averaged responses aligned to the
offset of vocal elements followed by asilent gap of atleast 100 ms. d, Spiking
activity fromapopulation of AAC neurons (BG3) during example vocalization,
playback, and quiet baseline periods. e,f, Mean firing rates of AAC neurons

duringvocalization compared with playback (e) and during playback compared
with baseline (f). Exact p-values displayed within each plot are from two-sided
Wilcoxonssigned-rank tests (n = 43,47 neurons for the BG3 and BG4 plots,
respectively).g, Bursting ratios of AAC neurons during vocalization and baseline
foreachindividualbudgerigar. h, Distribution of interspike intervals of AAC
neurons pooled across budgerigars.i,j, Mean firing rates (i) and bursting ratios
(j) of RAneurons during vocalization and baseline for each zebra finch.
lllustrations of the zebrafinchiniarereproduced fromref. 60, Elsevier.
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Extended DataFig. 4 |Neural similarity inbudgerigar AACis notdriven by
vocalreuse of elemental components. a, Sonogram of anexample zebrafinch
songrecorded using the same piezoelectric microphone as used for budgerigar
recordings. b, Schematic of the methodology for quantifying correlations
betweenunique and repeated vocal segments. Each zebra finch syllable was
decomposed into 20-ms segments using asliding window with a10-msstep size.
Correlations for repeated segments (vocal reuse) were calculated between
corresponding segmentsacross 10 renditions (2 renditions shown forillustration)
of each syllable. Correlations for unique segments (vocal similarity) were
calculated between segments from different syllables. ¢, Distributions of

correlation values between vocal similarity (orange) and reuse (blue), with 0.6
setasathreshold todistinguishbetween the two conditions.d, Distribution of
correlationvaluesacross all vocal segments analyzed in Fig. 2 for eachbudgerigar,
with percentage of correlations above 0.6 indicated on theright, representing
potential vocalreuse. e, Correlation between spectral similarity and neural
similarity matrices for an example budgerigar (left) and accompanying population
data (right), excluding all cases with spectral correlation values exceeding 0.6.
pdenotes Spearman’s correlation value. P-values displayed within each plotare
from two-sided permutation tests (n=216,848,1,113,918 pairs of vocal segments
foreach plot, respectively).
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Extended DataFig. 8| Populational representation of acoustic categories
and neural dynamics during vocal productionin AAC. a, Cumulative
distribution of Euclidean distances between neural states within (colored line)
oracross (blackline) acoustic categories for each budgerigar. Distance within
each category issignificantly smaller than between categories (P <107 forall
tests). P-values shown withineach plot are from two-sided Wilcoxon rank-sum
tests (n=66,349,440,144,270,591, 671,739,531, 44,391,753,1,854,597,921
instances of distances [1° plot]; n = 613,278, 7,657,741,57,829,635, 3,801,903,
101,861,288 instances of distances [2" plot]; n =13,512,201, 318,087,253,
270,688,278,94,772,028,1,578,197,393 instances of distances [3™ plot];
n=20,196,190, 86,638,866, 710,136,141,37,840,650,1,317,021,524 instances of
distances [4" plot]). b, Mean difference between within-category and between-
category neural distances derived from the true data (black vertical lines)
plotted against the null distribution generated by randomly shifting spike
times (see Methods). Exact p-values displayedin each plot are from one-sided
permutation tests (n=1,000 permutations). ¢, Cumulative distribution

of Euclidean distances between neural states within (solid line) or across

(dottedline) acoustic categories, based on asubsample of non-overlapping
neural states (see Methods). P-values shown within each plot are from two-sided
Wilcoxon rank-sum tests (n=1,435,416 withinand 2,902,569 between category
instances of distances [1* plot]; n =119,859 within and 168,561 between category
instances of distances [2" plot]; n=1,113,510 withinand 2,508,576 between
category instances of distances [3"plot]; n=1,326,700 withinand 2,000,210
between category instances of distances [4" plot]). d, Similar to cbut with each
within-category distances plotted separately as colored lines. P-values shown
within each plotare from two-sided Wilcoxon rank-sumtests (n=106,491, 216,811,
1,038,961, 73,153,2,902,569 instances of distances [1* plot]; n =990, 11,628,
101,025, 6,216,168,561 instances of distances [2" plot]; n = 21,528,503,506,
445,096,143,380, 2,508,576 instances of distances [3 plot]; n=30,381,125,250,
1,113,778,57,291,2,000,210 instances of distances [4" plot]). P <107 for all
tests. e, Neural trajectories for three example vocal elements spanning two
acoustic types. Colorindicates time within the element. Grayscale dots are the
neuralstates corresponding to the three acoustic types (see labelsin panel at left).
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Extended DataFig.9|Aneuralfrequency axisin AACstate space. a, Pitches
(whitelines on top) were estimated from vocalizations with harmonicindices
thatexceeded the median ofthe distribution (shaded region). b, Distribution of
estimated pitches for eachindividual budgerigar. ¢, Schematic of the calculation
ofthe neural frequency axis. The axis was computed as the vector between the
mean neural responses tolow and high pitchesin halfof the data. The other half
of the datawas then used to calculate the relationship between pitch and
projection onto the axis (see Methods). d, Slope of the relationship between
pitchand projections onto the neural frequency axis for each budgerigar. Black
vertical lines denote slope from data; gray distributions indicate slopes from
pitch-shuffled data. Exact p-values displayed in each plot are derived from one-
sided permutation tests (n =5,000 permutations). e, Population neural
responses at different time windows relative to vocalizations were mappedtoa
two-dimensional state space using PCA. Colored dots represent neural states

underlying vocalizations with frequency estimated (color indicates pitch), and
gray dotsare associated with less harmonic vocalizations whose pitch was
difficult to estimate. f, Performance of alinear modelin predicting pitch values
using scores of the first two PCs for neural responses calculated within amotor
time window (-30 to -5 ms), compared to two other time windows with large
temporal shifts (-125to-100 ms and 100 to 125 ms). P-values displayed within
the plotare fromtwo-sided Wilcoxon rank-sum tests (n = 14,566 neural states)
with Bonferroni correction. Boxplot elements: center line, median; box limits,
upper and lower quartiles; whiskers, minimum and maximum values excluding
outliers. g, Population-level pitch representation (Fig. 4c) displayed separately
for callsand warble syllables. Colored dots denote neural states associated
with pitchesin calls (left) or warble syllables (right). Gray dots represent neural
states for other vocalizations.
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Extended DataFig.10|Pitch encodinginbudgerigar AAC. a, Schematic of
pitch tuningindex calculation. b, Pitch tuningin three example neurons from
Fig.4g, presented as binned scatter plots (gray) and averaged firing rates
(mean + SEM) across pitches (green) for all vocal elements (left), only calls
(middle), and only warble syllables (right). Blue circles represent baseline firing
rates. ¢, Relative contributions of four acoustic features in GLM models
explaining single AAC neuron responses shown for all neurons (left), pitch-
tuned neurons (pitch tuningindex > 6; middle), and non-tuned neurons (pitch

tuningindex <6; right), respectively. Boxplot elements: center line, median;
box limits, upper and lower quartiles; whiskers, minimum and maximum values
excluding outliers. Exact p-values shown within each plot are from Bonferroni-
corrected, two-sided Wilcoxon signed-rank tests (n = 220,112,108 neurons for
each plot, respectively). d, Relationship between decoded and measured
pitchesacrossall calls for each budgerigar, shown as binned scatter plots.
Linear decoders trained on warble syllables were used to predict pitchin calls.
Rvaluesrepresent Pearson correlation between decoded and measured pitches.
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Extended DataFig.11|See next page for caption.



Extended DataFig.11|NeuronsinzebrafinchRA donotappeartoencode
pitch withinthe song. a-c, Burst-associated pitch values for an example RA
neuron. Black boxesinadenote vocalization periods associated with bursting
events (indicated by red barsin c), with vocal periods shifted by 12 msrelative
toburstevents. Pitch contour withineach period s highlighted inb, with the
mean pitch value marked by agreen dot and anumber next to the contour.

d, Pitch valuesfor all bursting events across the RA population. Each dot
represents aburst event and its associated pitch. e, Relationship between

firingrates and pitch for three example RA neurons, presented as binned scatter
plots (gray) and averaged firing rates (mean + SEM) across pitches (blue).

f, Distributions of the range of burst-associated pitch values for observed data
(blue) and for randomly sampled pitch values fromd. g, Distributions of the
variance of burst-associated pitch values for observed data (blue) and for
randomly sampled pitch values fromd. Infand g, Exact p-values shownontop
arederived from two-sided Wilcoxon rank-sum tests (n =116 samples).
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Extended DataFig.13|Behavioral recording methodology. a, Photograph two piezoelectric microphonesimplanted on two budgerigars (bottom).
ofrecording arenafor budgerigars with one budgerigar tethered on each side. Piezoelectric microphones enable excellentisolation of individual vocalizations

b, Example recordings from an omnidirectionalambient microphone (top)and  which are mixed inthe ambient microphone.
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Extended Data Table 1| Information for statistical tests

Independent or

Figure Test name Sample size paired P value
measurements
Fig. 1i Two-sided Wilcoxon signed-rank test 43 neurons Paired 3.0x10°®
Fig. 1j Two-sided Wilcoxon signed-rank test 220 neurons Paired 2.7x10%%
Fig. 1k Two-sided Wilcoxon signed-rank test 43 neurons Paired 1.1x108
Fig. 11 Two-sided Wilcoxon signed-rank test 220 neurons Paired 7.7x10°%8
Fig. 1n Two-sided Wilcoxon signed-rank test 67 neurons Paired 2.6x1012
Fig. 10 Two-sided Wilcoxon signed-rank test 502 neurons Paired 3.1x10°%8
Fig. 1p Two-sided Wilcoxon signed-rank test 67 neurons Paired 1.1x1012
Fig. 1q Two-sided Wilcoxon signed-rank test 502 neurons Paired 6.1x10%
Fig. 29 Two-sided permutation test 2,343 pais ofvocal Paired 0.12
segments
Fig. 2h Two-sided permutation test 9520 pairsiofvocal Paired 0.08
segments
Fig. 2i Two-sided permutation test 221,147 palrsiof vecal Paired < 10100
segments
Fig. 2j Two-sided permutation test 1,144,092 pairs of vocal Paired < 10100
segments
926,751,315 within &
Fig. 3g panel 1 Two-sided Wilcoxon rank-sum test 1’854’597’.921 hetween Independent < 10100
category instances of
neural distance
69,902,557 within &
Fig. 3g panel 2 Two-sided Wilcoxon rank-sum test 19 ’861’2.88 betean Independent < 10100
category instances of
neural distance
697,059,760 within &
Fig. 3g panel 3 Two-sided Wilcoxon rank-sum test 1’578’197’.393 hetaeen Independent < 10100
category instances of
neural distance
854,811,847 within &
Fig. 3g panel 4 Two-sided Wilcoxon rank-sum test 1’317’021’.524 Betean Independent < 10100
category instances of
neural distance
Fig. 41 1t column Two-sided paired t-test 4 budgerigars Paired 0.002
Fig. 41 2" column Two-sided paired t-test 4 budgerigars Paired 0.002
Fig. 41 3" column Two-sided paired t-test 4 budgerigars Paired 0.004
Fig. 41 4" column Two-sided paired t-test 4 budgerigars Paired 0.008
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Data collection  We used the RHX data acquisition software (ver. 3.1.0) from Intan Technologies to collect neural and audio data. The OlyVIA software (ver.
2.9.1) from Olympus was used to collect histological data.

Data analysis Spikes were sorted by Kilosort (ver. 1.0 and 2.5; https://github.com/MouselLand/Kilosort) and curated with Phy (ver. 2.0b6; https://
github.com/cortex-lab/phy). Sound Analysis Pro (ver. 2011; http://soundanalysispro.com/matlab-sat) was used to extract fundamental
frequencies of vocalizations. Rastermap (ver. 0.0.4; https://github.com/MouselLand/rastermap) was used to sort neurons in Fig. 3f.
Comparison of budgerigar vocal repertoire was performed using the variational autoencoder provided by Autoencoded Vocal Analysis (ver.
0.3.1; https://github.com/pearsonlab/autoencoded-vocal-analysis). Harmonic ratio was calculated by the 'harmonicRatio' function from the
Matlab Audio Toolbox (ver. 2023a; https://www.mathworks.com/help/audio/ref/harmonicratio.html). Other analyses were performed using
custom code (https://doi.org/10.5281/zenodo.14057061) written in Matlab 2023a.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data used in this study has been uploaded to Zenodo (https://doi.org/10.5281/zenodo.14057061). The Switchboard Telephone Speech Corpus is accessible through
the Linguistic Data Consortium (https://catalog.ldc.upenn.edu/LDC97562), and annotations of the corpus are provided by The Institute for Signal and Information
Processing (https://isip.piconepress.com/projects/switchboard/).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A
other socially relevant
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Population characteristics N/A
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Ethics oversight N/A
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Numbers of birds (four budgerigars and seven zebra finches) were chosen according to previously published electrophysiological studies in
birds (Egger et al., 2020; Elmaleh et al., 2021 and 2023). Numbers of vocalizations (see main text) are commensurate with a previous single
neuronal study of human speech production (Khanna et al., 2024).

Data exclusions  All well-isolated AAC neurons were included for analysis. Detailed statements are made in the methods, if analyses focus on a subset of
vocalizations (e.g., on vocal elements where pitch could be estimated).

Replication Only one experiment was performed in a single budgerigar. In total, data were collected from four budgerigars. Results are highly consistent
across the four budgerigars.

Randomization  There was only one experimental group in the study, to which all four budgerigars were assigned. In the playback experiment, the order of
vocalizations was randomized. The budgerigars were originally obtained from an outside breeder (open colony).

Blinding There is no group allocation in the experimental design. Cross validation techniques were adopted to avoid overfitting and double-dipping.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Plants

Involved in the study

Eukaryotic cell lines

n/a | Involved in the study

& |:| ChiIP-seq
& |:| Flow cytometry

Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms

Dual use research of concern

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

Four adult (> 240 days posthatch) male budgerigars (Melopsittacus undulatus) and seven adult (> 90 days posthatch) male zebra
finches (Taeniopygia guttata) were used in this study.

This study does not involve any wild animals.
Data were only collected from male birds in this study.
We did not use any field-collected samples.

All animal maintenance and experimental procedures conformed to the guidelines established by the Institutional Animal Care and
Use Committee at the New York University Langone Medical Center.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was upplied: ) )
Describe-any-atithentication-procedtures foreach seed-stock-tised-or-novel-genotype generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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