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Temporal scaling of motor cortical  
dynamics reveals hierarchical control  
of vocal production

Arkarup Banerjee    1,2,3,4,7  , Feng Chen    5,7, Shaul Druckmann    6 & 
Michael A. Long    1,2,3 

Neocortical activity is thought to mediate voluntary control over vocal 
production, but the underlying neural mechanisms remain unclear. In a 
highly vocal rodent, the male Alston’s singing mouse, we investigate neural 
dynamics in the orofacial motor cortex (OMC), a structure critical for vocal 
behavior. We first describe neural activity that is modulated by component 
notes (~100 ms), probably representing sensory feedback. At longer 
timescales, however, OMC neurons exhibit diverse and often persistent 
premotor firing patterns that stretch or compress with song duration (~10 s). 
Using computational modeling, we demonstrate that such temporal scaling, 
acting through downstream motor production circuits, can enable vocal 
flexibility. These results provide a framework for studying hierarchical 
control circuits, a common design principle across many natural and 
artificial systems.

Many species exert voluntary control over vocal production in response 
to conspecific partners or other environmental cues1,2. Neocortical 
activity observed across a range of species3–8 has been proposed to be 
important for executive control of vocalization9–12. For instance, corti-
cal neurons are preferentially active when nonhuman primates vocal-
ize in response to a conditioned cue6. By contrast, the primary vocal 
motor network consisting of evolutionarily conserved brain areas in 
the midbrain and brainstem10–14 is sufficient to generate species-typical 
sounds. Pioneering works in squirrel monkeys15 and cats16 as well as 
recent studies in laboratory rodents17–19 have identified many such 
areas, including the periaqueductal gray and specific pattern genera-
tor nuclei in the reticular formation. Although these subcortical vocal 
production mechanisms have been well characterized, much less is 
known about how cortical activity contributes to vocal production.

To address this issue, we focus our attention on the highly struc-
tured vocalizations of a Costa Rican rodent20, the Alston’s singing 
mouse (Scotinomys teguina; Fig. 1a). Singing mice produce a temporally 
patterned sequence of notes (~20–200 ms) that become progressively 

longer over many seconds, henceforth referred to as a song. Moreover, 
song duration can vary substantially in response to many internal21 and 
external22 factors, including social context20. Recently, we discovered 
that a specific forebrain region, the orofacial motor cortex (OMC), is 
crucial for vocal behavior in this species20. Stimulation of the OMC 
revealed a functional connection to vocally relevant musculature20 
through probable brainstem targets including the reticular formation, 
the ventrolateral periaqueductal gray and the parabrachial nucleus23. 
Directed perturbations of OMC during singing support a hierarchical 
control organization in which OMC and subcortical structures mediate 
song timing and note production, respectively20.

A major gap in understanding, however, concerns the nature of 
the cortical activity that drives the moment-by-moment control of 
this ethologically relevant vocalization. We therefore performed elec-
trophysiology recordings in singing mice to assess the impact of OMC 
dynamics on vocal production. We found that the population activity 
within OMC was highly stereotyped during singing compared to nons-
inging epochs. The firing rates of individual neurons were strongly 
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across neurons (for example, Fig. 1c), we found that the ensemble activ-
ity of simultaneously recorded OMC neurons was similar across song 
epochs and nonsinging periods (Fig. 1d,e). As each session consisted of 
multiple songs, we calculated the correlation values of OMC ensemble 
activity across all pairs of songs and found them to be significantly 
greater than in nonsinging epochs in the example session (Fig. 1f–h) as 
well as across all recording sessions (Corrsinging, 0.61 ± 0.11, Corrnonsinging, 
0.44 ± 0.12; paired t-test, P = 2.76 × 10−6) (Fig. 1i). Taken together, we 
find that OMC population activity is consistently modulated during 
song production.

As OMC ensemble activity displayed reliable neural dynamics dur-
ing singing, we next proceeded to characterize song-related spiking in 
individual OMC neurons. Each song is composed of a series of notes 
(Fig. 2a,b); therefore, neural activity could a priori be related to the 
production of each note at a fast timescale (~100 ms) or it could follow 
slower dynamics at timescales comparable to the entire song (~10 s). By 
statistically comparing neural activity during vocal production (versus 
nonsinging epochs), we found that 29.6% of neurons (111 out of 375) 
were correlated with notes (Extended Data Fig. 1a–c and Fig. 2c) while 
35.5% of neurons (133 out of 375) displayed dynamics spanning the 
entire song (Extended Data Fig. 1d–f; Methods) and 13.1% were active at 
both timescales. Therefore, more than half of individual OMC neurons 
were significantly modulated with some aspect of singing behavior.

Note-related responses of OMC neurons
Cortical activity has been shown to represent relevant kinematic fea-
tures (for example, velocity and force of effector muscles) for many 
movements24. Applying this framework to vocal production, we would 
expect OMC neurons to show phasic activity patterns preceding each 
note. To determine the relationship between OMC firing and note pro-
duction, we linearly warped spiking activity to both the onset and offset 

modulated by song features at both short (~100 ms) and long (~10 s) 
timescales, which corresponded to notes and song epochs, respec-
tively. Additionally, trial-to-trial changes in the timing of song perfor-
mance were reflected in the underlying cortical activity, consistent with 
the notion that OMC has a central role in the temporal progression of 
that behavior in conjunction with downstream motor targets. The vocal 
production pathway of the singing mouse thus provides a compelling 
example of hierarchical motor control that is likely to be relevant for 
other behaviors for which cortical involvement is required.

Results
Silicon probe recordings in freely behaving singing mice
We recorded OMC neural activity during vocal production in four adult 
male S. teguina using high-density silicon probes (Cambridge Neuro-
Tech or Diagnostic Biochips) (Fig. 1b,c). Electrodes were inserted to a 
final depth of 600–1,000 µm, such that most recording sites were in the 
ventral portion (that is, motor output layers) of the OMC. We used this 
approach to monitor neural activity continuously over 3–20 days, and 13 
sessions with robust vocal behavior (mean ± s.d. duration, 10.4 ± 5.7 h) 
were analyzed further. During these recording sessions, singing mice 
produced songs both spontaneously (n = 226) and in response to the 
playback of a conspecific vocalization (n = 79). For this study, which 
focuses on vocal production, we combined data across these condi-
tions, yielding a total of 23 ± 17 (mean ± s.d.) songs per session (range, 
8–72). In total, we recorded data from 375 neurons (mean ± s.d., 29 ± 11 
per session) from which spiking was stably monitored throughout the 
recording sessions (Methods).

OMC spiking is modulated during vocal production
We began by examining whether OMC neural activity was related to 
singing behavior. Although song-related spiking patterns often differed 
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Fig. 1 | Reliable cortical population activity during singing in S. teguina.  
a, S. teguina singing (photo credit, Christopher Auger-Dominguez). b, Schematic 
of S. teguina brain highlighting the recording site (that is, the OMC) as well as 
the positioning of electrodes (gray-shaded region). c, Spiking activity from 23 
simultaneously recorded OMC neurons during song production (bottom panel). 
The sonogram (top panel) depicts S. teguina song. Neurons with mean firing 
rates less than 1 Hz are excluded for visualization purposes. d, Firing rates of 
OMC neural ensemble from c during three singing epochs. For c and d, green and 
red lines mark the beginning and end of the song, respectively. e, Three epochs 

recorded outside of the song, with green and red lines reflecting the timing of 
the song from d. f,g, For the example session, pairwise correlations of the joint 
activity of the OMC ensemble recorded across all singing (f) and nonsinging 
(g) epochs. Dimensions of this matrix reflect the total number of songs in this 
session (n = 29). h, Correlation values across all songs are significantly higher 
during singing than during nonsinging (one-sided Welch’s t-test, P = 3.0 × 10−139). 
i, Average correlation values for each recording session (mean ± s.e.m., n = 13 
sessions, four mice). Red point refers to the example session shown in c–h.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | March 2024 | 527–535 529

Article https://doi.org/10.1038/s41593-023-01556-5

of notes (Fig. 2d). A close inspection of note-related neurons revealed 
a diverse relationship between spike timing and note duration. For 
instance, in some cases, there appeared to be a systematic shift in the 
spike timing as note durations increased (for example, Fig. 2d(i)), which 
may arise from systematic offsets between neural activity and note 
production. Specifically, if this shift were caused by a motor delay or 
the timing needed for premotor signals to result in a behavioral change, 
activity would precede the production of notes25. Conversely, if the 
timing shift were caused by sensory feedback, spiking activity would 
lag note production26.

To explore these possibilities, we systematically varied the timing 
of spikes with respect to the audio recordings (Fig. 2d and Extended 
Data Fig. 2a,b) and determined the time lag that resulted in the most 
consistent alignment with notes (Fig. 2e and Extended Data Fig. 2c–e; 
Methods). Among the population of note-modulated neurons, shifts 
resulted in significantly better alignment between neural activity 

and note phase in 25 cases (Fig. 2e,f; bootstrap P < 0.01; Methods). Of 
these 25 cases, 23 were consistent with sensory shifts and only 2 with 
motor offsets (Fig. 2f and Extended Data Fig. 2c–e). Based on the rela-
tive timing of neural activity and behavior, less than 1% (2 out of 375) 
of all recorded OMC neurons have a response profile consistent with 
a motor command for note production. Therefore, although we find 
phasic note-related activity in OMC, it is unlikely to be directly involved 
in the production of individual notes.

Precise temporal scaling of OMC activity with song duration
We next explored an alternative schema based on hierarchical control in 
which OMC population dynamics is dominated by a set of motor primi-
tives (that is, distinct patterns of neural activity) that do not directly 
represent movement kinematics27. In this view, motor commands for 
note production are determined by downstream vocal pattern genera-
tors driven by time-varying OMC activity spanning the duration of the 
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Fig. 2 | Note-related activity of OMC neurons. a, Singing behavior in a single 
S. teguina example song (top) and expanded view of seven notes within the 
above example (bottom). Horizontal lines represent the timing of notes, and 
the durations for each note (in ms) are provided below. b, Histogram of note 
(n = 30,540) and song (n = 305) durations plotted on a logarithmic axis across 
all recorded mice in this study (n = 4). c, Spiking activity corresponding to 
note timing for an example neuron. For visualization, the spike raster plot was 
restricted to notes within a range of 55 to 65 ms (full range, 31.4–175.9 ms), 
and spiking responses are arranged by accompanying note length, with the 
longest on the top and the shortest on the bottom. Subsequent notes are 
included in each row to highlight the periodic firing of this neuron. Green and 
red ticks indicate note onsets and offsets, respectively. d, Spiking activity of an 
example neuron linearly warped to a common note duration (onsets indicated 

by dashed green lines). Each row represents the firing of a neuron aligned to 
the beginning of a sequence of three notes; responses are sorted based on the 
original duration of the first note produced in this sequence from longest (top) 
to shortest (bottom). Rasters and spike probability density plots are provided 
for the recorded spike trains (i) and after imposing a ‘sensory’ (−30 ms) (ii) or 
‘motor’ (+30 ms) (iii) offset. e, Modulation strength and offset values for three 
example neurons. Gray circles and lowercase Roman numerals in the plot for Cell 
36 refer to the corresponding panels depicted in d (Methods). f, Summary plot 
showing the best-fit latency (restricted to x axis, ±53 ms, and y axis, 0–30 a.u.) 
corresponding to the maximum note modulation strength for 96 neurons. Gray 
symbols represent cases that are not significantly different from zero, and red 
(n = 15) and blue (n = 2) symbols represent points with sensory and motor offsets, 
respectively. The three example cells depicted in e are indicated.
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song, which is a configuration that has been proposed in other motor 
control studies28,29. Therefore, we broadened our view to examine the 
extent to which neural activity relates to the structure of the produced 
song at timescales comprising the entire song duration (~10 s).

We tested how OMC neural dynamics covaries with song duration, 
which can substantially differ across renditions (Fig. 3a). The activity 
of individual neurons may evolve with identical timing regardless of 
song duration and thus be correlated with ‘absolute time’ (Fig. 3b). 
Consequently, dynamics associated with shorter songs would simply 
look like truncated versions of those observed during longer songs. 
Alternatively, OMC neurons could reflect ‘relative time’ (Fig. 3c), in 
which neural activity expands and contracts to track the progression 
through longer and shorter songs, respectively. To test these models, 

we analyzed trial-to-trial differences in song duration across renditions 
(average variation, 139.9%, n = 13 sessions; for example, see Fig. 3a) and 
used a similarity analysis to compare the firing patterns of each modu-
lated neuron after the timing of activity had been linearly warped to 
align the onset and offset of song (Fig. 3d,e and Extended Data Fig. 3).  
The absolute time model predicted a higher degree of correlation 
when maintaining original timing and comparing initial portions of 
longer songs to shorter songs, while the relative time model suggests 
the opposite (that is, higher correlation after warping). We directly 
compared these two scenarios and found that the explained variance of 
single trial firing rates was significantly greater in the warped condition 
than in the unwarped condition (P = 7.5 × 10−7, one-sided paired t-test) 
(Fig. 3f), supporting the relative time model of OMC neural dynamics.
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To further quantify the magnitude of time scaling for each neuron, 
we generated a consensus neural activity profile for songs with similar 
durations (Fig. 3g and Extended Data Fig. 3; Methods). For each pair 
of blocks, we compared the neural activity profiles to determine the 
scaling factor that maximized the pairwise correlation (for example,  
Fig. 3h), which we call the neural scaling factor (Sneural). If the optimal 
neural scaling (that is, the ratio of activity profiles leading to the highest 
correlation value) matched the relative ratio of associated song dura-
tions (Sbehavioral), then the Sneural/Sbehavioral slope is expected to be 1 (equiva-
lent to the relative time model). When Sneural was plotted against the 
behavioral scaling factor (that is, ratio of the associated song durations, 
Sbehavioral), we found them to be linearly proportional (Fig. 3i,j). Across all 
the neurons, the neural scaling/behavioral slope was 1.01 ± 0.01 (quan-
tile regression without intercept, n = 659 pairs, 105 neurons; Fig. 3j;  
Methods). These results are consistent across individual animals as 
well as trial type (that is, solo songs or counter-songs) (Extended Data 
Fig. 4). For comparison, the absolute time model predicts a slope of 0. 
This result demonstrates that the activity of individual OMC neurons 
linearly stretches or compresses by a magnitude determined by the 
ratio of the song durations, enabling OMC activity to precisely track 
the proportion of the elapsed song.

Diverse individual neuron dynamics in OMC
We next asked what are the motor primitives observed in OMC dur-
ing vocalization. Given that OMC circuit activity precisely scales with 

song duration, we linearly warped the firing rates of song-modulated 
neurons to both the onset and offset of the song. Using this strategy, 
we observed diverse firing patterns within the OMC during vocaliza-
tion (Fig. 4). To quantify this heterogeneity, we performed hierarchical 
clustering (Fig. 4a; Methods) and found that 28.6% of neurons increased 
firing during song production while the remainder were suppressed. 
Further analyses of their response profiles—presumably reflecting the 
sensorimotor processes occurring during vocal production—revealed 
eight distinct clusters of neurons (Fig. 4a,b), which were confirmed 
through cross-validation (Extended Data Fig. 5a,b). We observed that 
some neurons exhibited transient responses coincident with song onset 
(Cluster 7), song offset (Cluster 6) or both (Cluster 2), and other neu-
rons showed more persistent increases (Clusters 1 and 3) or decreases 
(Clusters 4, 5 and 8) in neural activity during singing. Overall, neurons 
were responsive throughout the duration of the song and not just at 
song initiation and termination, consistent with moment-by-moment 
control of ongoing song production. Each cluster exhibited a ratio of 
neural and behavioral scaling values that did not differ from 1 (Extended 
Data Fig. 5c), confirming the relative time model. We conclude that the 
population of OMC neurons that keep track of relative time (that is, 
phase) shows diverse firing patterns during song production.

Computational model of vocal motor control
To understand how motor commands for note timing can be generated 
from the motor primitives described above (Fig. 4), we next constructed 
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a data-driven hierarchical model that makes experimentally testable 
behavioral predictions. In this model, OMC does not determine note 
timing directly (consistent with a lack of ‘premotor’ timing in Fig. 2),  
but vocal motor control is instead shared by cortical and down-
stream circuits. Inspired by our data, we posit that cortex dictates the 
moment-by-moment song phase and overall duration (Fig. 3), while 
the motor command for individual notes is generated by midbrain 
and/or brainstem areas comprising the primary vocal motor network 
(Fig. 5a and Extended Data Fig. 6). In the model, OMC activity provides 
descending synaptic drive, which influences the rate of note production 

in the subcortical song pattern generator (Fig. 5b). To account for the 
decreasing rate of note production with time, the synaptic drive onto 
the downstream note pattern generator may decrease throughout the 
song. We accomplish this in our model through linear weighting of OMC 
activity profiles directly measured in our recordings (Extended Data 
Fig. 6a), which sum up to produce synaptic drives with varying slopes 
(Fig. 5b). We model the workings of the note pattern generator such 
that individual notes are produced upon reaching a fixed firing rate 
threshold (Methods), akin to an integrate-and-fire module. Appropri-
ate time-scaling of cortical activity will thus result in songs of different 
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Fig. 5 | Hierarchical model of vocal motor control. a, Schematic depicting 
shared control of vocal production, in which OMC controls song duration and 
rate of progression while individual notes are produced by a downstream note 
pattern generator. The synaptic drive to the note pattern generator is derived 
from OMC neural activity (Extended Data Fig. 4). b, Activity profiles of four 
model OMC neurons for a long song (purple) compared to a short song (cyan). 
Linear summation of neural activity creates the synaptic drive to the note pattern 
generator. The note pattern generator is modeled as an integrate-and-fire 
module, such that the rate of note production depends upon the strength of  
the OMC synaptic input. c,d, Model output using five different values of time-
scaling predicts that the number of notes linearly covaries with song duration (c) 
without an appreciable increase in the duration of the longest note (d). Cyan and 
purple indicate examples from b. e,f, The note number scales with song duration 
in an example mouse (e; n = 144 songs, left) as well as across the population  

(f; n = 13 mice). Lines represent linear regression fits for each individual animal. 
Red line indicates data from the example on the left. g,h, In an example animal 
(mouse 4), cooling-related expansion of song duration is associated with an 
increase in the number of produced notes (g) without changing the maximum 
note duration (h). i,j, The average change number of notes (i) and maximum note 
length (j) as the result of cooling across the population (n = 9 mice). OMC cooling 
significantly increased average song durations (control, 7.8 ± 0.4 s; cooled, 
8.8 ± 0.4 s; paired two-sided t-test, P = 0.0009) as well as average number of notes 
(control, 91.0 ± 3.2; cooled, 100.2 ± 3.7; paired two-sided t-test, P = 0.005) without 
significantly changing the maximum note length (control, 130.7 ± 5.4 ms; cooled, 
126.4 ± 5.8 ms; paired t-test, P = 0.31). Red lines in i and j indicate data from mouse 
4. k, Hierarchical model of vocal motor control, wherein OMC confers flexibility 
to a downstream song pattern generator.
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durations without the need for modifying the note-generating mecha-
nism (Fig. 5b). Importantly, this role of the OMC is robust to the choice 
of the precise means by which note generation is implemented in the 
note pattern generator, either by postsynaptic adaptation mechanisms 
or synaptic drive from another brain region (Extended Data Fig. 6b,c).

We next test a specific behavioral prediction of our hierarchical 
model to assess its validity. Our model predicts that songs become 
longer by incorporating more notes (Fig. 5c) and not by increasing the 
duration of individual notes (Fig. 5d). Alternately, if note timing were 
directly triggered by note-modulated OMC activity (Fig. 2), longer 
songs would have the same number of notes with their durations pro-
portionately stretched, as observed in songbirds30,31. We tested these 
predictions by examining the structure of songs produced with dif-
ferent durations and found that the number of notes systematically 
increased as a function of song duration (n = 13 mice; four from this 
study and an additional nine from a published dataset20) (Fig. 5e,f), a 
finding that strongly agrees with our hierarchical model.

We further considered a directed circuit perturbation to assess 
whether the relationship between notes and song duration relies 
on activity within OMC. We reanalyzed a dataset in which OMC was 
focally cooled in nine mice20. Previous experimental30,32–34 and theoreti-
cal35 work predicts that mild focal cooling should dilate the temporal 
profile of OMC neural activity, thereby slowing the progression of 
subcortically controlled note production. For each animal, OMC cool-
ing resulted in an increase in both song duration (control, 7.8 ± 0.4 s; 
cooled, 8.8 ± 0.4 s; paired t-test, P = 0.0009) and the number of notes 
(control, 91.0 ± 3.2; cooled, 100.2 ± 3.7; paired t-test, P = 0.005), 
without significantly changing the maximum note length (control, 
130.7 ± 5.4 ms; cooled, 126.4 ± 5.8 ms; paired t-test, P = 0.31) (Fig. 5g–j). 
These experimental results concerning the relationship between song 
length and note production match the predictions of our hierarchical 
model (Fig. 5c,d). We conclude that cortical activity can generate the 
necessary vocal motor commands to account for natural variability 
in behavior.

Discussion
In this study, we used chronic silicon probe recordings to observe 
neural population activity in S. teguina during vocal production. We 
found that neurons within the orofacial motor cortex exhibited reliable 
activity across songs, which reflected the highly structured nature of S. 
teguina vocalizations. Specifically, we observed neurons whose activ-
ity reflected two behaviorally relevant timescales related to the song: 
phasic responses during note production (~100 ms) and persistent 
song-related dynamics (~10 s). We found that many neurons modulated 
at the faster timescale exhibited a delay between note timing and spik-
ing that could represent either sensory feedback or efference copy 
signals (Fig. 5k). Although the impact of sensory and motor processing 
on OMC activity during song production remains difficult to disentan-
gle, sensory feedback is known to be important in animal and human 
vocal motor control36–39, and a systematic perturbation of sensory 
streams (for example, auditory, proprioceptive)40 could test whether 
these signals are important in similar control processes in the singing 
mouse. Nevertheless, our time-shift analysis, modeling and perturba-
tion results confirm that these fast-varying responses in OMC do not 
reflect vocal motor commands to produce individual notes. At the slow 
timescale, responses were heterogeneous (for example, transient at 
song onsets, ramping responses and so on) and appear to reflect a set 
of motor primitives related to the control of song duration and the rate 
of note production. Future work will determine whether these spiking 
profiles map onto specific neuronal cell types in the OMC defined by 
critical circuit features, such as their output targets, as seen in motor 
cortical circuits in the laboratory mouse41–43.

These results provide a striking example of how motor cortical 
dynamics can modulate song production, perhaps reflecting a volun-
tary mechanism of generating adaptive vocal flexibility. To accomplish 

this moment-to-moment control, our cortical recordings support a 
model in which OMC acts hierarchically through downstream song 
pattern-generator circuits (Fig. 5k and Extended Data Fig. 6b,c), prob-
ably corresponding to regions that have been recently characterized 
in the laboratory mouse17–19 and appear to be highly conserved across 
vocalizing species10,11. The hierarchical model proposed here is consist-
ent with our previous work, in which we found that OMC inactivation 
did not abolish singing but significantly reduced the variability in 
song durations20, suggesting that activity in OMC provides necessary 
input to the brainstem to generate socially appropriate vocalizations 
(Extended Data Fig. 6b,c). As instantaneous note frequency is tightly 
correlated with song progression (phase), it is difficult to disambigu-
ate whether the OMC neural activity tracks relative time versus a more 
motor-centric signal that directly influences note frequency. Social, 
more variable songs that transiently decouple note frequency from 
song progression (for example, long pauses) can potentially resolve 
this dichotomy in the future. More broadly, subsequent studies are 
needed to determine the full song circuit in the singing mouse and 
elucidate the synaptic mechanisms by which OMC influences down-
stream vocal production circuits.

Our results support the notion that the singing mouse vocal con-
trol network contains a higher-order modulator (that is, the OMC) that 
extends the capabilities of lower-level motor controllers (that is, note 
production circuitry) without being necessary for generating the basic 
motor program. This arrangement—referred to as a partially autono-
mous hierarchical configuration44–46—is a successful design principle 
for both biological and artificial systems, and it enables behavioral flex-
ibility without relying upon synaptic plasticity in downstream motor 
patterning circuits. Similar mechanisms have been observed in experi-
ments in which animals are trained to keep track of time47–55 and in the 
primate cortex during motor tasks performed at different speeds56. Our 
results extend the scope of such temporal scaling algorithms over an 
expanded time window (~10 s) and to a new domain: controlling vocal 
flexibility in mammals. Despite its ubiquity, the neural mechanisms 
contributing to temporal scaling are not well understood, although 
several ideas have been proposed, including feedback loops47,52 and 
neuromodulatory gain control57. The OMC circuit in the singing mouse 
offers a valuable opportunity to examine these and other circuit fea-
tures for generating motor flexibility in the context of an ethologically 
relevant behavior.
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Methods
Animals
All procedures were conducted in accordance with protocols approved 
by the Institutional Animal Care and Use Committee of NYU Langone 
Medical Center. Animals used in the study were adult (>3 months 
old) male laboratory-reared offspring of wild-captured Scotinomys 
teguina from La Carpintera and San Gerardo de Dota, Costa Rica. 
Mice were maintained in a temperature-controlled (22 ± 3 °C) and 
humidity-controlled environment with a 12:12 h light/dark cycle. Ani-
mals were housed in large rat-style cages with a running wheel and 
dietary enrichment. Careful veterinary oversight was provided, with 
regular inspections of both breeding facilities and behavioral arenas.

Behavioral recordings
S. teguina adults were housed in individual recording chambers (Med 
Associates) lined with sound insulation foam (Soundproof Cow). 
Vocalizations were recorded using a condenser microphone (Avisoft 
Bioacoustics CM16/CMPA) placed within home cages. Acoustic signals 
were sampled at 250 kHz and digitized with Avisoft UltraSoundGate 
116Hb. For playback experiments, we used an ultrasonic tweeter (Vifa), 
as described previously20. To precisely align the audio and electrophysi-
ology signals, each data stream was additionally recorded continuously 
into an Intan recording system at a fixed sampling rate between 20 and 
30 kHz. Natural variability in vocal behavior in this species resulted in 
sessions during which a variable number of songs were recorded. For 
statistical reasons, sessions with at least eight songs were analyzed 
further (13 sessions from four animals).

Silicon probe recordings
Chronic recordings were performed using either 64-channel (Cam-
bridge NeuroTech, E-1) or integrated 128-channel high-density 
silicon probes (Diagnostic Biochips, 128-5). Before surgery, probes 
were mounted to a plastic microdrive (NeuroNexus, d-XL), and a 
stainless-steel ground wire (0.001″, A-M systems) was soldered to the 
reference of the headstage, which was held in place by a custom-made 
3D printed enclosure (Formlabs). For all surgical procedures, mice 
were anesthetized with 1–2% isoflurane in oxygen and placed in a stere-
otaxic apparatus. The neural activity of freely moving singing mice was 
recorded using an electrically assisted commutator (Doric Lenses) and 
the RHD USB interface board or RHD recording controller (Intan Tech-
nologies). For all chronic recordings, silicon probes were implanted 
directly into the OMC using the following stereotaxic coordinates: 
+2.25 mm anterior to bregma, +2.25 mm lateral to the midline. This 
location represents the center of the OMC region identified by electri-
cal microstimulation20. The ground wire was inserted between the skull 
and the dura above the visual cortex or cerebellum contralateral to the 
probe implantation. Silicon elastomer (Kwik-Cast, WPI) was applied 
to the craniotomy once the probe was inserted to the desired depth 
(1 mm for OMC). The microdrive and the enclosure were secured to 
the skull with dental acrylic and Metabond cement (Parkell). Animals 
were monitored and allowed to recover for 3–7 days before the start of 
electrophysiology experiments. Spike detection and clustering were 
performed using KiloSort1 software58 and manual post-processing 
(merging and/or splitting of clusters) was performed using phy1 
(ref. 59). Clusters that drifted during the recording session were not 
included in further analyses. Neuron counts reflect the number of 
‘session-neurons’, which does not rule out the possibility that some 
individual neurons may be recorded across multiple sessions. Spike 
times of all clusters were aligned to onsets and offsets of individual 
notes or songs as specified below.

Behavioral annotation of acoustic parameters
We analyzed song structure using custom software (MATLAB R2016b) 
as described previously20. In brief, we first smoothed the sound wave-
form with a 4 ms sliding window. We then identified individual notes, 

which typically exhibited an absolute intensity threshold correspond-
ing to 25–40 dB below the mouse’s loudest note. Exact note start times 
and stop times were calculated based on the maximum intensity of 
each note, such that onsets and offsets were first and last crossings of 
1% (20 dB quieter) of each note’s maximum intensity. Note duration 
was calculated as the difference between the offset and onset for each 
note. Song duration was defined as the difference between the offset 
of the last note and the beginning of the first note. For each song, the 
number of notes was plotted against the overall song duration. For 
each animal, linear regression (MATLAB function polyfit) was used to 
describe how the number of notes varies as a function of song duration. 
For reanalysis of the previously published cooling dataset20, the num-
ber of notes as well as the note duration of the longest note (maximum 
note duration) for each song was plotted against the song duration for 
both control and cooled conditions. A small minority of songs (~3% of 
total attempts) that were shorter than 3 s were ignored. To summarize 
the cooling result, for each animal, we calculated the averages of note 
number, maximum note duration and song durations.

Correlation analysis of neuronal ensembles during singing
We performed a correlation analysis for each session individually. We 
estimated the firing rates from the spike trains using a Gaussian kernel 
(σ = 0.2 s). The window size for correlation analyses was determined 
according to the longest song duration (Tmax) in that session. To better 
capture the modulation at the onset and offset, an additional 2 s was 
included before the song onset and after the song offset, leading to a 
total window size of Tmax + 4 s. Within this time window, we sampled 
at 200 ms intervals from the estimated firing rates to construct the 
peri-song time histograms (PSTHs) for each song in the session. We 
then concatenated the PSTHs from all the neurons for each song into 
a single vector. A correlation matrix was then constructed by tak-
ing the correlation between all pairs of songs. For the nonsinging 
epochs, we followed a similar procedure but with song timing (onsets) 
replaced by control epochs, which were set to be 30 s after the song 
offsets. For each session, we averaged the off-diagonal elements in the 
correlation matrix and performed a one-sided paired t-test to assess  
the significance.

Selection of note-modulated and song-modulated neurons
Note-modulated neurons. Within a song, consecutive notes usually 
possess short gaps between them (~1/3 of the note duration, as shown 
in Fig. 2a). We define a note cycle (Tcycle) as the time between the onsets 
of subsequent notes. Some songs may have short pauses. To distinguish 
actual Tcycles from these pauses, we required that the Tcycle duration 
should be less than three times the note onset–offset duration. All the 
analyses on notes in this paper were performed with Tcycles that met the 
above criterion. We verified that our results remain consistent if we 
change Tcycles to be the time from note onset to offset or the time 
between the offsets of successive notes. Given that notes have variable 
durations, our analyses were carried out after warping spiking activity 
to align onsets and offsets, which enabled the calculation of phase 
tuning. We defined note phase as the relative time within a Tcycle as 
ϕ(t) ≡ t−tonset

Tcycle
. To identify note-modulated neurons, we summarized the 

spike phases for all the notes and used the Rayleigh z-test (α = 0.01) to 
test against the null hypothesis, positing uniform distribution of spikes 
within each note cycle.

Song-modulated neurons. We selected the song-modulated neurons 
initially without warping, that is, in absolute time. As each song within a 
session has a different duration, and the different durations could affect 
estimations of variance, we used the same window size for all songs. 
Specifically, we determined the window size based on the shortest song 
duration (Tmin) in that session. We performed statistical tests twice: 
once for song onset alignment and once for song offset alignment 
(Extended Data Fig. 1d). To better capture the modulations at song 
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onsets or offsets, we included an additional 2 s before the song onsets 
or following the song offsets. For song onset alignment, we calculated 
the averaged firing rates within the time window by counting the spikes 
from 2 s before the song onsets to Tmin after the song onsets. For song 
offset alignment, we calculated the averaged firing rates within the time 
window by counting the spikes from Tmin before the song offsets to 2 s 
after the song offsets. As a control, we created a baseline nonsinging 
epoch for each song by counting the spikes from 10 to 70 s after the 
song offsets. In rare cases when another song appeared in this time 
window, we excluded the song period and extended the time window 
to include a total of 60 s of baseline activity. We then performed a 
two-sided paired t-test (α = 0.01, unless stated otherwise) to test the 
null hypothesis that the firing rates within a song were the same as 
baseline firing rates.

Analysis of note-related neural activity
We found that for many neurons, the time course of modulation  
by notes had a peak that shifted with note duration (for example,  
Fig. 2d(i)). One possible explanation is that there is a latency in absolute 
time between the behavioral recordings and neural activity. To quantify 
this offset, we postulated that the optimal latency should give  
the strongest modulation. We defined the modified phase as  
ϕ̃(t,Tcycle,ΔT ) ≡

t−tonset+ΔT
Tcycle

, where ΔT is the fixed latency in absolute time,  

Tcycle is the note cycle duration and tonset is the note onset. We can obtain 
the modulation vector by summarizing the modified phases: 
⇀
m ≡ ( 1

n
∑i sin 2πϕ̃i,

1
n
∑i cos 2πϕ̃i), where n is the total number of spikes 

in all Tcycles and the summation is overall spike times indexed by i. We 
also estimated the standard error of the L2 norm of the modulation 
vector and denoted it as Δ‖

⇀
m ‖2 . The modulation strength is then 

defined as M(ΔT) ≡ ‖
⇀
m ‖2

Δ‖
⇀
m ‖2

, which is a function of the absolute latency 

ΔT applied to obtain the modified phases. The optimal latency was 
determined from ΔTop ≡ argmin

ΔT
M(ΔT).

To determine whether the latency was sensory-like or motor-like, 
we selected neurons that had a latency significantly different from zero 
based on bootstrapping. We randomly sampled the note cycles 1,000 
times to obtain the distribution for inferred optimal latency. We then 
selected neurons that had an optimal latency distribution significantly 
different from zero (two sides, α = 0.01). In total, 25 neurons were found 
to have latencies that were significantly different from zero.

Analysis of song-related neural activity
To differentiate between the absolute time and relative time models, 
we constructed a mean template and compared the variance explained 
by each model. To do so, we estimated the firing rates from the spike 
trains using a Gaussian kernel (σ = 0.2 s) and denoted this continuous 
function as rσ(t). For the absolute time model, we set the time window to 
Tmin in that session and sampled every 200 ms in this window from rσ(t) 
to construct the PSTHs. This gave a matrix Rabs with dimension (nsong, 
5 × Tmin). For each neuron, we then constructed the mean template by 
taking averages across the rows (that is, song dimension) and com-
puted the explained variance of the PSTHs about the mean template. 
For the relative time model, we sampled the same number (5 × Tmin)  
of points evenly from the firing rate function rσ(t) after linearly  
warping time between song onset and song offset. Explicitly stated, 

RRRrel
ij = rσ (tionset +

tioffset−t
i
onset

5Tmin
j), where tionset and tioffset denote the onset and 

offset for the ith song in the session. Following this calculation, 
identical to the above process, we computed the mean template and 
the explained variance using Rrel in place of Rabs.

To further quantify the degree of stretching and compression in 
the relative time model, we performed the following scaling analysis. 
For each session, we first grouped songs of similar durations using the 
Jenks Natural Breaks method60. We averaged the neural firing rates 

within each song cluster, r(c)σ (t) = 1
|𝒮𝒮c |

∑j∈𝒮𝒮c
rσ(t jonset + t) , in which the 

superscript (c) denotes the cluster and 𝒮𝒮c denotes the set of song indi-
ces in cluster c. For any two clusters (for example, c1 and c2), the goal 
was to find the scaling factor sneural that gave the largest correlation 
between the two cluster-averaged firing rates r(c1)σ (t) and r(c2)σ (t). For-
mally, for a given scaling factor s, we first chose the window size 
Tw(s) = max ( T(c1 )

s
,T(c2)), where T(ci) is the average song duration in that 

cluster. We then computed the correlation ρ (r(c1)σ , r(c2)σ , s) between the 
two cluster-averaged firing rates along the time dimension using 31 
points sampled equidistantly from 0 to Tw(s). The optimal neural scal-
ing was obtained from sneural = argmax

0.4≤s≤2.5
ρ (r(c1)σ , r(c2)σ , s). We obtained the 

behavior scaling factor from sbehavioral ≡
T (c1)

T (c2)
. If the neural firing rates 

can be explained by relative time, we would obtain sneural ≈ sbehavioral. 
Depending on whether T (c2) is longer or shorter than T(c1), the behavior 
scaling factor sbehavioral would be either larger or smaller than 1. To elimi-
nate the ambiguity of these two choices of orders, we required  
sbehavioral ≤ 1; that is, we chose the order such that T (c1) is smaller than T (c2). 
We performed the scaling analysis on all possible combinations of the 
cluster pairs for each neuron. To perform this analysis, two valid clusters 
per session were required (12 out of 13 sessions met this criterion). Scal-
ing analyses were only performed on song-modulated neurons whose 
firing rates exceeded 1 Hz either within the song or within the control. 
To summarize the results, we binned sbehavioral (bin size, 0.05) and plotted 
the median of sneural within each bin. The best-fit line was estimated  
using quantile regression without intercept. Note that for this scaling 
analysis sorted by individual animals (Extended Data Fig. 4b), we were 
limited by the total number of songs from mouse 1. Therefore, the 
significance threshold for including a neuron was relaxed to P = 0.05.

Hierarchical clustering
We estimated firing rates from spike trains using a Gaussian kernel 
(σ = 0.2 s) and denoted this continuous function as rσ(t). For the 
song-modulated neurons, we linearly warped their absolute time  
firing rates to the relative time firing rates and determined the mean 
across songs, ̄rσ (θ) =

1
nsongs

∑irσ ((t
i
offset − tionset)θ + tionset). We then trans-

formed ̄rσ (θ) to its z-score z(θ). For each neuron, we sampled the  
z-score from θ = −0.2 to θ = 1.2 with an interval of 0.01, which composes 
the vector representation of the neural modulation with the song. 
Agglomerative clustering was carried out on those vector representa-
tions. We used Euclidean distance as the affinity function. We chose 
the distance threshold to be 25. An average template was computed 
for each cluster by averaging across the neurons within the cluster.

Cross-validation for hierarchical clustering
To cross-validate the hierarchical clustering results, we randomly  
split the songs into two halves: one for training and another for  
testing. During training, we took the mean across the training songs, 
̄r(train)σ (θ)= 1

|𝒮𝒮train |
∑i∈𝒮𝒮train

rσ((tioffset−t
i
onset)θ+tionset)  and transformed it to its z-score 

z(train)(θ). For each neuron, we sampled the z-score from θ = −0.2 to θ = 1.2 
with an interval of 0.01, which composes the vector representation of 
the neural modulation with the song. Agglomerative clustering was 
then carried out on those vector representations. We used Euclidean 
distance as the affinity function and chose the threshold so that there 
were eight clusters. During testing, we recomputed the z-score z(test) (θ) 
from the test songs. We showed the test matrix in the same order as the 
training matrix. We also computed the cluster-averaged traces of the 
test z-scores against those of the training z-scores.

Computational model
We constructed a two-step model for hierarchical vocal motor control 
in the singing mouse. We assumed that a note pattern generator inte-
grates synaptic input and fires upon reaching a fixed threshold using 
the leaky integrate-and-fire equation:
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τdV
dt

= −V + S × r

where V is the instantaneous voltage of the note pattern generator 
and S is the synaptic drive onto the pattern generator; r and τ are the 
membrane resistance and the membrane time-constant, respectively, 
with units chosen appropriately. V was initialized and reset to 0 mV 
whenever it reached a particular threshold voltage (Vth = 50 mV). This 
constituted the motor command for producing each note.

Given that the rate of note production per unit of time stead-
ily decreases as the song progresses, the overall synaptic drive was 
required to have a negative slope. In the simplest version of the model, 
we assumed that the synaptic drive is entirely derived from OMC popula-
tion activity. The synaptic drive was estimated using a linear combina-
tion of synaptic weights from the empirical neural data. The synaptic 
weights were calculated for one standard song duration (~8 s), which is 
close to the average song duration in this species. Note that the shape 
of the synaptic drive (sloping down) does not require individual OMC 
neurons to do so. This should be interpreted as the effective influence of 
OMC on the note pattern generator. To generate songs of different dura-
tions (for example, T = 4 to 16 s), OMC neural activity was time-scaled by 
the exact ratio of the song durations (that is, T/8) based on our empirical 
result without modifying the synaptic weights. This generates steeper 
slopes for songs shorter than 8 s and shallower slopes for songs longer 
than 8 s. This model predicts that the total number of notes correspond-
ing to each song duration increases linearly, which is recapitulated by 
the behavioral and cooling data. We find that this key result holds for 
large ranges of the values of the model parameters (V, Vth, S, r, τ).

Currently, the mechanistic details of the pattern generator circuit 
are unknown. Therefore, we explore an alternative scenario by relax-
ing the assumption that the synaptic drive is entirely driven by OMC 
without any loss of generality. Its origin can be driven either entirely 
by OMC or by a combination of OMC and other brain areas. Moreover, 
the downward-sloping synaptic drive can, in practice, result from a 
combination of a time-scaled duration signal and spike-frequency 
adaptation (Extended Data Fig. 6).

Statistics and reproducibility
No statistical methods were used to pre-determine sample sizes but they 
were constrained by the amount of spontaneous singing that occurred 
within a single session (for example, 1 out of 13 sessions was excluded 
owing to an insufficient number of songs). Additionally, neurons with 
firing rates less than one spike per second were excluded to ensure sta-
tistical rigor. Using cross-validation, we have demonstrated sufficient 
statistical power to support our claims (for example, Extended Data 
Fig. 5). The main results reported in the paper were replicated by two 
authors (A.B. and F.C.) with analysis codes written independently using 
two different software packages (MATLAB R2016b and Python v.3.8.10). 
Randomization and blinding were not performed because our study 
does not include experimental and control conditions.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Further information and requests for resources and reagents should 
be directed to and will be fulfilled by the lead contact, M.A.L. (mlong@
med.nyu.edu). This study did not generate new unique reagents.  

The datasets generated during this study are available upon request 
from the lead contact. Source code and documentation required for 
running all analyses are available.

Code availability
Analysis code is available in a GitHub repository (https://github.com/
ccffccffcc/NNSingingMouse).
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Extended Data Fig. 1 | Determination of significant note- and song-related 
responses. (a,b) Example neurons with (a, Cell #19) and without (b, Cell #1) 
significant note modulation. Spike rasters (top) and spike probability density 
plots (bottom) for example neurons whose activity profiles have been linearly 
warped to a common note duration (onsets indicated by green lines). Each row 
represents the warped spike raster of a neuron aligned to the beginning of a 
sequence of three notes; responses are sorted based on the original duration 
of the first note produced in this sequence from longest (top) to shortest 
(bottom). At right, polar plots describing the tuning of spike times with respect 
to the relative phase of note production. Dashed lines indicate a uniform 
distribution. (c) Histogram of note modulation (see Methods) for significantly 

note-modulated neurons (n = 111) compared with the same analysis applied to 
nonsinging epochs. (d) Song modulation analysis protocol. Neural activity for 
songs (black rectangles) are aligned either to their starts (top) or stops (bottom). 
The evaluation window (song epoch) begins and ends two seconds before 
and after the shortest song duration of that session. (e) The relative firing rate 
difference between the song-aligned spiking activity and a nonsinging period for 
a modulated (left, Cell #169) and unmodulated (right, Cell #187) neuron. 72 song 
trials are represented by separate lines for each neuron. Significance determined 
by bootstrap resampling (***: p < 0.01 two-sided test, n.s.: not significant).  
(f) Histogram of song modulation values (see Methods) for all song modulated 
neurons (n = 133) and those not modulated by song (n = 242).
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Extended Data Fig. 2 | Further characterization of note-related responses.  
(a and b) Spike times of two example neurons – Cell #5 (a) and Cell #19 (b) - 
linearly warped to a common note duration (onsets indicated by dashed lines). 
Each row represents the warped spike raster of a neuron aligned to the beginning 
of a sequence of three notes; responses are sorted based on the original duration 
of the first note produced in this sequence from longest (top) to shortest 
(bottom). Examples in (a) and (b) relate to analyses in Fig. 2e. (c) Spiking activity 
corresponding to note timing for an example neuron (Cell #180 from Mouse #4). 
For visualization, analysis was restricted to notes of prespecified durations (top: 
55 to 60 ms; bottom: 150 to 200 ms, sample note sonograms provided for each 

range). For long note durations, robust spiking emerges near the end of  
each note. Green and red ticks indicate the onset and offset of notes,  
respectively. (d) Spiking activity from Cell #180 linearly warped to a common 
note duration (onsets indicated by dashed lines). Timing shifted by a best fit 
latency of 110 ms (sensory-like shift). (e) Summary plot (extension from  
Fig. 2f) showing the latency resulting in the maximum note modulation strength 
for all note modulated neurons (n = 111). Gray symbols represent cases that are 
not significantly different from zero, and red (n = 23) and blue (n = 2) symbols 
represent points with sensory and motor offsets, respectively.
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Extended Data Fig. 3 | Song-modulated neurons. (a-c) Spiking raster plots 
for three example neurons – Cell #19 (a), Cell #5 (b), and Cell #176 (c) – across all 
trials. At right, a peri-song time histogram (PSTH) for song blocks representing 
the shortest and longest songs in the session (indicated by cyan and magenta 
vertical lines on right of raster plots). Black curve represents temporally 

compressed PSTHs from longest trials as a comparison. The magnitude of 
compression was chosen to match the ratio of the song durations. (d-f) Spike 
times of neurons in (a-c) after temporally warping to the beginning and end of 
song. Green and red lines indicate the onset and offset of songs, respectively.
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Extended Data Fig. 4 | Quantifying neural scaling as a function of behavior 
across categories. (a,b) The ratio of the neural scaling factor (Sneural) to the 
behavioral scaling factor (Sbehavioral) with neurons grouped across different 
categories, namely reactive versus spontaneous singing (a) and animal ID (b). 
Each dot represents a comparison of similarly timed trial blocks (n = 4 - 21) for an 
individual neuron; quantifications denote median ± MAD. For the analysis shown 
in (b), Mouse #1 was limited in its total number of song trials per session with our 
original stringent criterion for significance threshold (p = 0.01), which prevented 

us from testing our hypothesis. We therefore relaxed this threshold across all 
animals to p = 0.05, which enabled a direct comparison of scaling factor. In all 
cases for both (a) and (b), the median neural:behavioral scaling ratio overlapped 
with 1, which denotes perfect co-variance between the duration of the song 
and the underlying OMC neural dynamics. See Methods and Fig. 3h for further 
information concerning how these parameters were calculated. Two-sided tests 
were used unless specified otherwise.
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Extended Data Fig. 5 | Cross-validation of hierarchical clustering. (a) Shown 
are the results of hierarchical clustering performed on the training (left) and 
test (right) set of trials sorted with respect to cluster affiliation (left). (b) Cross-
validated firing rate profiles of the eight clusters evaluated on the training (solid) 
and the test (dashed) data set. (c) The ratio of the neural scaling factor (Sneural) to 
the behavioral scaling factor (Sbehavioral) with neurons grouped across different 

categories. Each dot represents a comparison of similarly timed trial blocks 
(n = 4–21) for an individual neuron; quantifications denote median ± MAD. In 
all cases, the median neural: behavioral scaling ratio overlapped with 1, which 
denotes perfect co-variance between the duration of the song and the underlying 
OMC neural dynamics. See Methods and Fig. 3h for further information 
concerning how these parameters were calculated.
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Extended Data Fig. 6 | Details of the computational model. (a) Inferred 
weights (shown at left) for each song-modulated OMC neuron (shown in middle) 
which leads to a descending synaptic drive (shown at right) to the downstream 
note pattern generator. (b) An alternative implementation of the hierarchical 
model, in which the note pattern generator produces a song by combining an 
unscaled step-like input with a characteristic time-dependent adaptation.  

These inputs could be intrinsic to the pattern generator or could be inherited 
from a different brain area. In both cases, time-scaled OMC activity can interface 
with the existing note generating mechanism to produce adaptive behavioral 
variability. (c) In the absence of the OMC input, the note pattern generator can 
produce notes but loses flexibility resulting in songs with higher stereotypy, 
consistent with a partially autonomous motor control system.
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Laboratory animals These experiments are done on adult male Alston's singing mice (Scotinomys teguina) bred and maintained  in a temperature and 

humidity controlled facility at NYU. Large communal cages, running wheels, and dietary enrichment are provided.

Wild animals All animals used in this study were laboratory-reared offspring of wild-captured Scotinomys teguina from La Carpintera and San 

Gerardo de Dota, Costa Rica. No wild-caught mice were used as part of this study.
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(Okobi, Banerjee et al, Science, 2019). 
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