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A speech planning network for interactive 
language use

Gregg A. Castellucci1,2, Christopher K. Kovach3, Matthew A. Howard III3, 
Jeremy D. W. Greenlee3 & Michael A. Long1,2 ✉

During conversation, people take turns speaking by rapidly responding to their 
partners while simultaneously avoiding interruption1,2. Such interactions display a 
remarkable degree of coordination, as gaps between turns are typically about 
200 milliseconds3—approximately the duration of an eyeblink4. These latencies are 
considerably shorter than those observed in simple word-production tasks, which 
indicates that speakers often plan their responses while listening to their partners2. 
Although a distributed network of brain regions has been implicated in speech 
planning5–9, the neural dynamics underlying the specific preparatory processes that 
enable rapid turn-taking are poorly understood. Here we use intracranial 
electrocorticography to precisely measure neural activity as participants perform 
interactive tasks, and we observe a functionally and anatomically distinct class of 
planning-related cortical dynamics. We localize these responses to a frontotemporal 
circuit centred on the language-critical caudal inferior frontal cortex10 (Broca’s 
region) and the caudal middle frontal gyrus—a region not normally implicated in 
speech planning11–13. Using a series of motor tasks, we then show that this planning 
network is more active when preparing speech as opposed to non-linguistic actions. 
Finally, we delineate planning-related circuitry during natural conversation that is 
nearly identical to the network mapped with our interactive tasks, and we find this 
circuit to be most active before participant speech during unconstrained turn-taking. 
Therefore, we have identified a speech planning network that is central to natural 
language generation during social interaction.

Conversational turn-taking can be divided into three major cognitive 
processes: perception of the opposing speaker’s turn, planning of one’s 
own turn and production of the speech comprising that turn2,14 (Fig. 1a, b). 
Although each of these steps is composed of several subcomponents2,8,14 
(Extended Data Fig. 1a), speech planning is an especially multifaceted 
process encompassing various functions ranging from abstract concep-
tual and semantic operations to low-level articulatory programming and 
motor initiation15. Accordingly, many cortical regions have been linked 
to aspects of planning, including the inferior frontal gyrus5,9,16,17, the pre-
motor cortex8, the superior temporal gyrus6, the supplementary motor 
area8,18 and the inferior parietal cortex7. However, because non-interactive 
tasks—such as picture naming16,17, repetition5,6,18 and reading5,9—have 
typically been used to identify such candidate regions, their relevance to 
speech preparation during interaction is unknown. In this study, we delin-
eate the neural substrates underlying the planning processes relevant for 
rapid turn-taking by measuring cortical activity while participants engage 
in structured interactive tasks as well as unconstrained conversation.

Characterization of planning activity
Speech planning is an internal process with little or no behavioural 
correlate19 that often overlaps with speech perception and production 

during natural conversation2,20–22. Therefore, we first sought to experi-
mentally isolate neural activity related to planning during turn-taking. 
To do so, we employed an established question–answer paradigm in 
which a single word (that is, the ‘critical information’ or CI) initializes 
speech planning by providing the information necessary for a correct 
response20 (Fig. 1c–f). An experimenter posed a battery of 39 to 94 CI 
questions (55.1 ± 20.5, mean ± s.d.; Supplementary Data 1) to 8 partici-
pants (neurosurgical patient volunteers; Extended Data Table 1), with 
the CI presented either near the middle (‘early’) or the end (‘late’) of the 
question. If speech planning is initiated by CI, late trials should show 
longer response latencies than early trials as they provide relatively less 
planning time2,20. As expected, we observed that the median reaction 
times were significantly longer in late trials compared with early trials 
(median: 782 ms versus 495 ms; P < 0.05 (n = 8 participants), signed-rank 
test; Extended Data Fig. 1b, c), indicating that the CI paradigm tempo-
rally isolated the prearticulatory processes relevant to rapid turn-taking 
in our neurosurgical cohort.

We next examined cortical responses while participants answered 
CI questions. Previous work using this task has reported widespread 
CI-related activity at the scalp using electroencephalography20, and 
we sought to leverage the temporal (<10 ms) and spatial (<5 mm) 
precision23 of intracranial electrocorticography (ECoG) to measure 

https://doi.org/10.1038/s41586-021-04270-z

Received: 29 September 2020

Accepted: 19 November 2021

Published online: 5 January 2022

 Check for updates

1NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA. 2Center for Neural Science, New York University, New York, 
NY, USA. 3Department of Neurosurgery, University of Iowa, Iowa City, IA, USA. ✉e-mail: mlong@med.nyu.edu

https://doi.org/10.1038/s41586-021-04270-z
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-04270-z&domain=pdf
mailto:mlong@med.nyu.edu


118  |  Nature  |  Vol 602  |  3 February 2022

Article

planning activity at distinct cortical sites. We implanted a total of 874 
ECoG electrodes across the left, language-dominant hemispheres of 
8 participants (64 to 224 electrodes in each; Supplementary Data 2) 
and found 790 electrodes (90.4%) to be suitable for further analysis 

(Methods). We assayed neural activity by examining the high gamma 
frequency band (approximately 70–150 Hz) of the local field potential 
and observed that the activity profiles of many electrodes were tempo-
rally locked to specific phases of the CI questions (Fig. 1c–f). Specifically, 
perception-related activity remained sustained throughout the dura-
tion of the experimenter’s question (Fig. 1c, d), and production-related 
activity was largely restricted to the period comprising the participant’s 
spoken answers (Fig. 1e, f). By contrast, planning-related activity was 
observed immediately following CI presentation and generally returned 
to baseline before participant response (Fig. 1c–f); this profile was con-
sistent across trials (Fig. 1g–j) regardless of the CI position or question 
content (Extended Data Fig. 1d, e).

Cortical language circuitry is highly multimodal24,25 and previous 
research has suggested that processing for interactive behaviours may 
be widely distributed rather than organized into discrete modules26. 
Therefore, it is possible that the dynamics exhibited by our electrodes 
do not cluster into distinct categories related to specific phases of spo-
ken interactions but instead form a continuum at the population level. 
To differentiate these alternatives, we designed a general linear model 
(GLM) to quantify activity levels during the perception, planning and 
production windows of the CI task (coloured bars in Fig. 1c–f, Extended 
Data Figs. 1f, 2). We focused our analyses on significant increases in 
high gamma amplitude—a correlate of local neuronal activity27—and 
detected a total of 253 electrodes (32.0%) with significantly elevated 
responses during at least one of the defined task epochs (Fig. 1k–n, 
Supplementary Data 2). We then examined the organization of all 
task-responsive electrodes in three-dimensional space according to 
their perception, planning and production GLM weights (Fig. 1o) and 
found that significant positive responses for each category were invari-
ably confined to separate clusters (k-medoids clustering; Fig. 1p). In 
contrast, a ‘continuum model’ assuming unimodal distributions of GLM 
weights (Extended Data Fig. 3a–c) always exhibited clusters containing 
multiple response classes (Extended Data Fig. 3d). In addition, we found 
that only 61 electrodes (24.1% of responsive sites) in our recorded data 
showed positive responses within more than one task window (Fig. 1q), 
significantly fewer than expected under the continuum model (inter-
quartile range 44.3–48.6%; Extended Data Fig. 3e). Taken together, 
these results demonstrate that the neural responses recorded with our 
ECoG electrodes are organized into discrete classes related to speech 
perception, planning and production during turn-taking.

We next examined the relative frequency of neural responses (that 
is, significant positive GLM weights) related to each window of the 
CI task. We found that responses related to planning and produc-
tion were most common, with 20.3% and 15.3% of electrodes showing 
significant increases in activity during the planning and production 
windows, respectively. These electrodes often exhibited significant 
negative perception-related GLM weights (Fig. 1k–n, Extended Data 
Fig. 4a, Supplementary Data 2), which is likely to reflect a decrease in 
activity during the perception window of the CI task (Extended Data 
Fig. 4b). Meanwhile, only 4.6% of electrodes were responsive during 
the perception window, probably resulting from sparse electrode 
coverage over the auditory-related temporal cortex28 (Extended Data 
Fig. 5a–c). To ensure that the temporal overlap of the perception and 
planning windows in early CI trials (Fig. 1c, e) did not bias our analysis 
against detecting perception responses, we reanalysed our dataset 
with a reduced GLM lacking a planning component and found no net 
increase in perception-related electrodes (Extended Data Fig. 3f–h). 
These results demonstrate that our statistical approach and behav-
ioural paradigm effectively delineated the cortical dynamics related 
to each phase of these interactions.

Spatial structure of planning responses
Although ECoG has been previously used to map cortical regions related 
to speech perception28 and production29, a similar high-precision 
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spatial characterization for speech planning remains elusive. In addi-
tion, it is possible that planning-related loci are not spatially segre-
gated30 and share extensive territory with perception-related and/or 
production-related sites24,25. To resolve this issue, we first examined the 
activity recorded within individual participants and observed that elec-
trodes responsive for the same windows of the CI task (that is, same GLM 
class) were spatially clustered (Fig. 2a, b, Extended Data Fig. 5a). Across 
participants, anatomically distinct cortical networks related to speech 
perception, planning and production during the CI task appeared at 
consistent cortical sites (Supplementary Data 2), regardless of their 
underlying clinical condition (Extended Data Fig. 5e). Specifically, 
electrodes that were responsive during perception (Fig. 2c) and pro-
duction (Fig. 2d, Extended Data Fig. 5d) were largely restricted to well 
characterized sensory28 and motor29 structures, respectively. Mean-
while, 95% of planning-related electrodes were grouped in a spatially 
segregated frontotemporal region (Fig. 2e, Extended Data Table 2), 
with the highest densities of planning electrodes clustered in the caudal 
inferior frontal gyrus (cIFG) and the caudal middle frontal gyrus (cMFG) 
and a smaller number of planning sites located in the ventral speech 
motor cortex (vSMC) and the anterior superior temporal gyrus (aSTG) 
(Fig. 2f). We found that many electrodes within planning-related and 
production-related vSMC, IFG and cMFG also exhibited significant 
negative perception-related GLM weights (Extended Data Fig. 4c–e), 
which suggests that these structures are relatively less active during 
speech perception. However, a small number of electrodes within the 
IFG displayed perception-related responses (Fig. 2c), consistent with 
the previously established role for the IFG in language comprehension31. 
In summary, we have delineated a spatially coherent network whose 
activity is selectively linked to planning speech.

Speech selectivity of planning responses
To initiate speech planning in the CI task, a participant must first per-
ceive the CI; therefore, this paradigm does not disentangle the cognitive 
processes involved in comprehending the CI from those occurring at 
planning onset. We addressed this issue using a command-response 

(CR) task in which participants were instructed to perform a range of 
actions varying in their linguistic relevance (Supplementary Data 1), 
including: hand movements (that is, button pressing; ‘CR1’, Fig. 3a), 
non-speech orofacial behaviours (‘CR2’, Fig. 3b), speech repetition 
(‘CR3’, Fig. 3c) and linguistic operations (that is, noun pluralization; 
‘CR4’, Fig. 3d). Crucially, the structure of the CR tasks mirrors the CI 
task—a critical word or phrase is presented either early or late and its 
comprehension is required to generate a motor response.

Using this approach, we further characterized 124 electrodes from 
6 participants who displayed significant planning-related responses 
in the CI task (Extended Data Table 1). Although individual planning 
electrodes could respond maximally in each of the CR tasks (Fig. 3a–d), 
only a subset displayed significant increases in preparatory activity for 
hand (18.6%) and non-speech orofacial movements (43.6%) whereas the 
majority were responsive for speech repetition (59.7%) and pluraliza-
tion (80.7%) (Fig. 3e–h). At the population level, planning activity was 
greater in the CI task than in all CR conditions except pluralization 
(P < 0.005 and P > 0.99, respectively (n = 124 electrodes), Friedman test 
with Dunn–Šidák post-hoc tests; Fig. 3i). However, reaction times did 
not differ across the repetition task, pluralization task and CI questions 
(P = 0.3114 (n = 6 participants), Friedman test; Fig. 3j), indicating that 
the observed activity differences are unlikely to have resulted from task 
difficulty. Taken together, these results indicate that activity within the 
identified planning network reflects speech preparation rather than 
processes related to comprehension or task engagement.

Although planning electrodes were generally more active during 
speech as opposed to non-speech CR tasks (Fig. 3e–i), we hypothesized 
that individual regions may display variable degrees of speech selectiv-
ity6,32. Therefore, we examined planning activity levels in relation to 
cortical location and observed higher levels of preparatory activity 
broadly within the planning network as linguistic relevance increased 
(Fig. 3k–n). However, we found that planning electrodes within the cIFG 
were more linguistically selective than electrodes located in the precen-
tral gyrus (PreCG) and the cMFG (Fig. 3o–r), as most PreCG and cMFG 
electrodes displayed significant planning responses in both speech 
tasks whereas electrodes in the cIFG were generally responsive for 
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the pluralization task only (Fig. 3q–s). These results therefore suggest 
that our planning circuit is further divided into subnetworks related 
to distinct speech planning processes.

Planning during natural conversation
We next aimed to compare the neural activity observed during 
task-based interaction to that arising during natural language use. 
To do so, we recorded neural activity while participants engaged in 
unconstrained conversation with the experimenter for 2.8 min to 
16.3 min (Extended Data Fig. 6a) following completion of the structured 
tasks. In this context, our cohort exhibited grossly normal turn-taking 
behaviour, the temporal properties of which were comparable to that 
observed in the general population2,3 (Extended Data Fig. 6b). These 
rapid interactions therefore provide an opportunity to investigate the 
neural mechanisms underlying naturalistic turn-taking.

During conversation, we observed that individual electrodes dis-
playing planning-related responses in the CI task were often active 
before the onset of a participant’s turn (Fig. 4a), which suggests that 
these sites are engaged in speech preparation during both behaviours. 
However, unlike our interactive tasks, speech planning during natural 
behaviour is highly flexible22,33 and not temporally locked to an experi-
mentally defined stimulus (that is, the CI); this behavioural variability 
thus renders a supervised analysis of neural activity largely unfeasible. 
To overcome this issue, we performed principal component analysis 
(PCA) on continuous electrode signals recorded while participants 
engaged in either the interactive tasks or natural conversation. This 
approach allowed us to identify sets of electrodes displaying correlated 
signals during task performance and conversation independently and 
assess whether network structure remains stable between the two 
contexts. During the tasks, we found that the electrode signals formed 
three main clusters in three-dimensional principal component (PC) 
coefficient space (n = 6 participants; Fig. 4b, Extended Data Figs. 6c, 
7a–f), indicating that neural activity during task-based interactions is 
organized into distinct classes. We then asked whether this configura-
tion is preserved in unstructured turn-taking and found that electrode 
signals formed nearly identical clusters during conversation (Fig. 4c, 
Extended Data Fig. 7a–f). Specifically, only 5 of 200 electrodes were 
differently clustered between the two behaviours across participants, 
which is significantly less than would be expected by chance (interquar-
tile range 120–128; P < 0.0001, k-medoids clustering with permutation 
test; Extended Data Fig. 6d). Thus, the cortical network active during 
language generation in task-based interactions is similarly organized 
during natural turn-taking.

We subsequently assessed whether the PCA activity clusters observed 
during natural conversation corresponded to neural responses related 
to speech perception, planning and production. Although these 
functional classifications were originally made using a GLM—which 
detected elevated neural activity within predefined time windows 
of the CI task (Fig. 1)—we found that clusters in PC coefficient space 
were overwhelmingly composed of electrodes exhibiting a single class 
of task-related response, thus enabling us to functionally categorize 
each PCA cluster as ‘perception’, ‘planning’ or ‘production’ in 17 out 
of 18 cases across participants (Fig. 4c, Extended Data Fig. 7a–f). We 
observed a high degree of correspondence between cluster categori-
zation and GLM-derived activity classes, such that 93.8%, 94.7% and 
96.1% of electrodes in perception, planning and production clusters 
displayed analogous responses (P < 0.0001, permutation test; Extended 
Data Fig. 6e). Therefore, using our unsupervised PCA approach, we 
uncovered categories of neural activity during natural conversation 
that correspond to the distinct response classes and circuits isolated 
with the CI task (Extended Data Fig. 6f).

We next assayed time-varying PC activity (that is, PC scores) to exam-
ine the functional properties of electrodes within perception, planning 
and production clusters during task-based and natural turn-taking. 
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Each cluster category was found to be highly weighted for an individual 
PC (Fig. 4d); therefore, we employed these maximally weighted PCs 
as an aggregate signal reflecting the overall activity of each cluster 
and further analysed two perception-related PCs, six planning-related 
PCs and five production-related PCs (Extended Data Fig. 7). Across 
participants, we observed that planning PCs displayed a significant 
peak in average activity near the offset of experimenter speech that 
continued into the interturn gap for both the task and conversation; 
conversely, perception PCs were active during the experimenter turn 
but sharply decreased in activity at the offset of experimenter speech 
(P < 0.05, permutation test; Fig. 4e). Planning PCs likewise exhibited 
a peak in activity before participant turn onset for both the task and 
conversation, whereas production PC activity was typically restricted 
to participant speech in both contexts (P < 0.05, permutation test; 
Fig. 4f). These results demonstrate that the functional properties of 
PCs related to speech perception, planning and production during 
unconstrained turn-taking are congruent with the responses observed 
in the structured CI task.

Finally, we examined planning PC activity during individual 
turn-taking interactions to provide a first description of speech 
planning-related dynamics during natural conversation. We observed 

planning-related PCs to be most active during experimenter turns 
and silent gaps before participant turns; these responses differed 
dramatically from production-related PCs, the activity of which was 
largely restricted to periods of articulation (Fig. 4g–i). Across partici-
pants, we likewise found that planning PCs displayed maximal activity 
levels during interturn gaps whereas the perception and production 
PCs were most active during the experimenter and participant turns, 
respectively (Fig. 4j–l, Extended Data Fig. 6g). Taken together, the 
functional properties displayed by the planning-related PCs are con-
sistent with speech preparation during conversation, indicating that 
these signals represent the neural correlates of the planning processes 
enabling rapid turn-taking during natural language use.

Discussion
Conversational turn-taking requires a complex interplay of simultane-
ous speech perception and planning coupled with finely timed speech 
production. We used ECoG recordings to isolate planning-related 
dynamics and found these responses to be functionally and anatomi-
cally distinct from those underlying speech perception and produc-
tion. We observed these discrete classes of neural activity during both 
structured interactions and unconstrained conversation, thus paving 
the way for future studies of naturalistic speech generation by provid-
ing a description of neural dynamics arising in real-world language use. 
Although previous work has suggested that neural circuitry related to 
human language is highly multimodal24,25 and distributed30, our find-
ings indicate that separate cortical modules perform distinct functions 
within the language network during ethologically relevant interactive 
speech production8,15. This conclusion is consistent with perturbation 
studies of human language circuitry16,17,34,35 as well as investigations of 
cortically dependent non-human vocalizations demonstrating the 
existence of anatomically distinct subcircuits within larger vocal pro-
duction systems36,37.

Our findings demonstrate that planning-related responses during 
interaction are largely restricted to a frontotemporal circuit centred on 
the cIFG and the cMFG. The caudal portion of the IFG (pars opercularis 
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and pars triangularis) is thought to represent Broca’s region, which is 
classically considered to be crucial for speech production10,38. How-
ever, more recent work has demonstrated that this region is active 
before—rather than during—articulation5,17. Using our interactive 
paradigm, we also observe that responses in the cIFG occur primarily 
before speech initiation, and we show that this activity is specifically 
associated with planning speech. Unlike the cIFG, the cMFG has typi-
cally not been considered important for speech planning or articula-
tion12,39, although a case of pure apraxia of speech following its focal 
resection has been recently reported11. Here we show that the cMFG is 
involved in speech-selective planning during interaction. This region 
displays robust anatomical connectivity with the cIFG40, as well as other 
language-related regions11,41, and therefore represents an important 
cortical site for future study as its role in language generation has been 
largely overlooked.

It is likely that the cIFG and the cMFG perform distinct functions 
related to speech planning, as evidenced by their differing levels of 
speech selectivity exhibited during the CR tasks. However, future 
work is necessary to elucidate the specific planning subprocesses 
that are executed by these and other nodes within the identified plan-
ning network and to uncover how these subprocesses unfold in real 
time during turn-taking. Nevertheless, the isolation of this planning 
circuitry represents an important advance towards understanding 
how the human brain generates language in naturalistic contexts and 
complements parallel efforts in the wider field of neuroscience aimed at 
quantifying natural behaviour broadly42. Furthermore, this work helps 
lay a foundation for future studies investigating the biological basis of 
communication disorders—such as stuttering and apraxia of speech—
where abnormalities in speech planning disrupt social language use43,44.
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Methods

Participants
Participants were patient volunteers undergoing surgical treatment at 
the University of Iowa Hospitals and Clinics for medically intractable 
epilepsy or brain tumours who consented to participate in research. 
Patient participants were undergoing treatment with implanted ECoG 
electrodes for seizure focus determination or for required awake cra-
niotomy. All procedures were approved by the University of Iowa Insti-
tutional Review Board. Patients were confirmed to be left-lateralized 
for language production with Wada testing and/or were confirmed to 
be right-handed or ambidextrous (Extended Data Table 1).

Behavioural tasks
Three behavioural tasks were included in this experiment.

Critical information task. CI questions were adapted from an estab-
lished Dutch stimulus set20,45. We developed 120 similarly structured 
English questions, which were divided among three categories (animals, 
body parts and antonyms). Each category features pairs of questions 
with the same CI in which the CI was presented either early or late (for 
example, Fig. 1c–f). The full list of CI questions is provided in Supple-
mentary Data 1.

CI questions were read to the participant by an experimenter, who 
instructed the participant to respond as quickly as possible. Questions 
were presented in random order and varied slightly in exact wording 
from experiment to experiment. All CI questions could be answered 
with a single word, although participants occasionally responded with 
a short phrase.

Command-response tasks. The four CR tasks were performed in a 
randomized order interleaved with CI task trials in all cases except one, 
where it was completed as a separate block (Extended Data Table 1). A 
full list of all CR stimuli is presented in Supplementary Data 1. In CR1 
(hand movements), participants performed movements that engage 
muscles unrelated to speech production. Specifically, participants 
pressed a spring-loaded button using their right hand a variable number 
of times, ranging from 1 to 4. In CR2 (orofacial movements), participants 
were instructed to carry out non-speech orofacial tasks, specifically 
smiling, mouth opening, tongue protrusion and lip puckering. The 
movements were recorded with a video camera and time-stamped with 
a common timescale to the ECoG recordings. In CR3 (speech repeti-
tion), participants repeated a combination of monosyllabic real words, 
monosyllabic pseudowords, and/or disyllabic pseudowords. In CR4 
(pluralization), participants were instructed to produce the irregular 
and/or regular plural form of common monosyllabic nouns (for exam-
ple, ‘goose’ → ‘geese’). See Extended Data Table 1 for the specific tasks 
completed by each participant.

Unconstrained conversation. Following completion of the CI and 
CR tasks, the experimenter engaged the participant in unconstrained 
conversation. Participants were given no specific instructions during 
this portion of the experiment other than to speak naturally.

Data acquisition
For awake craniotomy patients, local field potentials were recorded 
either with a custom 64-channel grid engineered at the University of 
Iowa or with commercially available subdural grids manufactured by 
Ad-Tech Medical or PMT. Signals were amplified, bandpass filtered 
(0.7–800 Hz) and sampled at 2,034.5 Hz using a multichannel amplifier 
and digital acquisition system (PZ2 preamplifier and RZ2 processer; 
Tucker-Davis Technologies). For chronically implanted epilepsy 
patients, electrophysiological signals from subdural electrode grids 
and strips (AdTech) were bandpass filtered (0.1–500 Hz) and recorded 
at 2,000 Hz with a multichannel amplifier and digital acquisition system 

(ATLAS system, Neuralynx). Analogue input channels synchronized 
with the neural recordings additionally marked the timing of partici-
pant button presses and the output of a microphone that captured the 
speech acoustics of the experimenter and participant. Input channels 
were sampled at 48,828 Hz by the TDT system with OpenEx software 
and 16,000 Hz by the Neuralynx system with Pegasus software and 
downsampled offline to 12,000 Hz. In addition to the electrical signals, 
a video of the participant was also acquired at 24 fps during all experi-
ments. The video was synced to the electrophysiological data after the 
experiment and provided a secondary high-quality audio recording 
channel of the experiment, which was sampled at 48 kHz.

Behavioural analysis
The audio acquired with the electrophysiological acquisition system 
and/or camera was then annotated by a trained phonetician (G.A.C.) 
to determine the onsets and offsets of all experimenter questions/
commands, CI and participant responses for the CI and CR tasks. Trials 
where the participant failed to respond, requested additional informa-
tion (for example, asking for the question to be repeated), or produced 
a filled pause or disfluency (for example, saying ‘um’ or stuttering) 
before responding were excluded from further analysis. Trials in the 
CR task where a participant failed to accurately complete the command 
(for example, repeating a word when instructed to say the plural form 
of the word) were excluded from analysis. In the CR task, the onset and 
offset of hand movements were determined using the electrical signal 
from the button that was acquired simultaneously with the local field 
potentials and were defined as the onset of the first press and offset 
of the last press of the trial, respectively. For the CR trials requiring 
orofacial movement responses, the onset and offset of movements 
were estimated as the timing of the first and last frames of the video 
where movements were clearly observed.

The audio of the unconstrained conversation was also annotated 
to provide timestamps for the onsets and offsets of all experimenter 
and participant turns. Turns were considered continuous segments 
of speech that were uninterrupted by the other speaker. However, 
experimenter turns were occasionally truncated at silent pauses (that 
is, unfilled pauses) if the experimenter spoke continuously for periods 
in excess of 10 s. Silent pauses produced by the participant were anno-
tated within the participant’s turns. In addition, during the participant’s 
speech, the experimenter sometimes produced backchannels (for 
example, ‘okay’, ‘yes’, to display interest) that would not result in termi-
nation of the participant’s turn. In such cases, we did not consider these 
events turn-taking on behalf of the participant as they did not yield the 
floor. Interactions where the participant responded with a backchannel 
were noted (for example, Extended Data Fig. 6a) but were defined as 
turn-taking events on behalf of the participant. Finally, interactions 
where speaker overlap rendered reliable annotation impossible were 
not considered for analysis.

Anatomical reconstructions
Electrode localization in intraoperative patients. In intraoperative 
cases, electrode localization and coregistration was performed using 
intraoperative photographs and perioperative T1-weighted magnetic 
resonance (MR) images obtained over the course of the clinical workup. 
MR images were processed using the ‘recon-all’ pipeline in FreeSurfer to 
generate cortical surface meshes and to obtain surface-based coregis-
tration to an anatomical template space46. Intraoperative photographs 
of the craniotomy and electrode arrangement were then aligned to 
renderings of the surface meshes according to a visual comparison of 
gyral anatomy. Image-based localization was carried out by two raters 
(G.A.C. and C.K.K.) and, when discrepant, reconciled by an additional 
rater ( J.D.W.G.). Finally, a subset of electrode locations was identified 
in image RAS coordinate space by selecting the vertex within the sur-
face mesh nearest the electrode location, as observed in the aligned 
intraoperative photograph. The remaining locations were determined 
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through thin-plate spline (TPS) interpolation, according to the geom-
etry of the electrode grid.

Electrode localization in patients with chronically implanted elec-
trodes. Patients with chronically implanted electrodes underwent CT 
and MR imaging before and immediately after implantation. Electrode 
locations were identified in post-implantation images based on char-
acteristic metallic artefacts: localized magnetic susceptibility-related 
voids in MR images and punctate radiodensities in CT images. Electrode 
coordinates were transformed to the pre-implantation image through 
an initial linear image coregistration followed by a manually guided TPS 
warping. Coordinates aligned to corresponding anatomical landmarks 
in pre- and post-implantation imaging, identified through visual com-
parison of the linearly coregistered images, served as control points 
in the TPS warping

Electrode coregistration. For all patients, anatomical categorization of 
electrode sites was guided by surface-based coregistration and segmen-
tation implemented in Freesurfer47 using the Desikan-Killiany-Tourville 
(DKT) atlas48,49. Following automatic parcellation, the location of each 
electrode according to the DKT atlas labels was confirmed by three 
raters (G.A.C., C.K.K. and J.D.W.G.) and corrected if necessary. Electrode 
locations were then transformed into Montreal Neurological Institute 
(MNI) space using symmetric diffeomorphic registration implemented 
in the ANTs toolbox50 to obtain a nonlinear coregistration between the 
patient’s pre-operative T1 image and an MNI-aligned template brain 
(CIT168 template)51.

For analyses where electrodes from individual participants were 
rendered onto a canonical cortical surface (for example, Fig. 2c), elec-
trodes were plotted on the gyral surface of the asymmetric version of 
the 6th-generation template brain provided with the FSL software pack-
age. For analyses of electrode response density (for example, Fig. 2f), 
the proportions of electrodes displaying a given response profile in 
1-cm-diameter regions of the canonical cortical surface were calculated 
for areas with electrode coverage from at least three participants.

ECoG signal pre-processing
Before pre-processing each participant’s electrophysiological data, 
non-responsive channels were first identified and excluded (Sup-
plementary Data 2). Such channels were clearly identifiable as they 
displayed signal variances markedly lower than active channels. Next, 
artefactual periods were identified in the active channels by iteratively 
thresholding at an absolute z-score threshold of 9 (calculated across 
the entire recording) and blanking all signals within 2 s of the suprath-
reshold period. The z-scores were then recomputed, and the procedure 
was repeated with undiscarded samples until all samples fell below the 
threshold. Any CI or CR trials occurring within 1 s of a blanked period 
were not considered for analysis.

Next, the electrophysiological data were pre-processed by filtering 
stationary and non-stationary line noise using adaptive thresholding 
applied to coefficients of the demodulated band transform52 with a 
bandwidth parameter of 0.25 Hz. The data were then high-pass filtered 
at 5 Hz with a finite impulse response (FIR) filter and re-referenced to 
the common average signal on a per-grid basis53. Finally, high gamma 
band amplitude was calculated for each channel by averaging the ana-
lytical envelope across 8 frequency bands of logarithmically increasing 
centre frequency (73–144 Hz) and standard deviations (4.68–6.62 Hz)29 
and resampled at 500 Hz. As artefacts were commonly observed at 
the beginning and end of recordings, these periods (the first and last 
roughly 5 s) were blanked in both the raw and high gamma signals. 
Finally, the high gamma signals for each channel were z scored across 
the entire recording duration. Only electrodes located on the cortical 
surface were included in the analyses described in this paper. Any sites 
within white matter, not contacting the brain, or deep within cortical 
or subcortical structures were not considered, and any electrodes 

determined to have been located on seizure foci or tissue included in 
the subsequent resection were excluded from further analysis.

Active site detection using generalized linear modelling
To identify electrodes displaying signals significantly correlated to 
speech perception, planning and production in the CI task, we used 
mass univariate generalized linear modelling in an approach similar 
to the statistical parameter mapping procedure used in functional 
MR imaging54 and ECoG55 studies. For each participant, we first con-
structed four block regressors using the temporal structure of each CI 
trial (depicted in Extended Data Fig. 1f): (1) a regressor that was active 
from experimenter question onset to participant answer offset, which 
was included to regress out any activity that was globally correlated 
with trial engagement but not with any specific feature of the task (for 
example, attention); (2) a regressor that was active from question onset 
to question offset to identify activity correlated with speech percep-
tion; (3) a regressor that was active from CI offset to 200 ms before 
answer onset (as articulatory movements not immediately resulting 
in an acoustic consequence can occur hundreds of milliseconds before 
the acoustic onset of speech19,56) to identify activity correlated with 
planning; and (4) a regressor that was active from 200 ms before answer 
onset until answer offset to identify activity correlated with participant 
speech production. A 250-ms buffer where no regressors were active 
was included before trial onset and after trial offset. The regressors for 
each trial along with the associated high gamma signals (downsampled 
to 100 Hz for computational efficiency) were then concatenated and 
GLM fitting was performed. This analysis was carried out using the 
‘glmfit’ function in MATLAB 2020a (MathWorks) with a normal distri-
bution and identity link function specified (therefore, general linear 
modelling was specifically performed).

To assess significance, we used a resampling method where the GLM 
was iteratively performed on a randomly selected subset of 80% of tri-
als over 100 repetitions with replacement. This resampling technique 
was then repeated to apply the trial structure to random epochs of high 
gamma data whose duration matched the actual data. This allowed us 
to generate empirical distributions of actual regressor weights, weight 
P values and full-model correlation coefficients as well as null distri-
butions for analogous values generated with shuffled signals. For an 
electrode’s individual regressor weights to be considered significant, 
two criteria had to be met: (1) the two-tailed 95% confidence inter-
val obtained from the empirical distribution of individual regressor 
weights could not include 0 or the mean shuffled weight for that regres-
sor and (2) the logscale distribution of the weight P values could not 
include the Bonferroni-corrected α value of 0.05 at the 95th percentile.

To confirm that the responses of individual electrodes were well 
fit by the specific temporal structure of the CI questions, we used a 
jittering analysis. Specifically, we performed the resampling tech-
nique described above on high gamma signals that were incrementally 
shifted in uniform 500-ms steps from zero lag to an absolute maximum 
jitter of 10 s, and the mean full model R value over 100 repetitions was 
recorded at each step for all electrodes (Extended Data Fig. 2a). We 
then collected random subsets (with replacement) of R values from 
the jittered models such that all participants contributed data from an 
equal number of electrodes (n = 44, 75% of the count from the partici-
pant with the fewest electrodes). To quantify the temporal precision 
of each electrode’s fit to the CI task data, we subtracted the median 
R value of large jitters (−10 s to −4 s) from the maximum R value of 
small jitters (−2 s to 2 s), a value we refer to as delta (D). We included 
only large negative jitters in the calculation of D to avoid inadvertently 
fitting activity related to the subsequent trial at high positive jitters 
with the short duration regressor corresponding to the participant’s 
answer (about 0.5 s). We observed that the pooled distribution of D 
values across participants was bimodal, with electrodes whose activ-
ity was fit poorly to the temporal structure of the CI task forming a 
cluster that was distinct from electrodes whose activity fit the task 



structure well. To isolate these two distributions, we then fit the D 
distribution with a mixture of two Gaussians after excluding values 
above the 95th percentile to reject outliers (Extended Data Fig. 2b). 
We then used the Gaussian representing the distribution of poorly fit 
electrodes to empirically define a D threshold by calculating the value 
at which 95% would be excluded (1.96 standard deviations from the 
mean) (Extended Data Fig. 2b). This procedure was repeated 1,000 
times and the median D threshold was calculated across iterations. 
Any electrode whose D value was below this threshold value (0.126) 
was excluded from further analysis. After thresholding, we found 
that the number of rejected sites within DKT-defined regions was sig-
nificantly anticorrelated with the number of responsive electrodes 
within each region (Spearman R = −0.8311, P < 0.0001; Extended Data 
Fig. 2c–e). Therefore, electrodes whose response profiles were not 
specifically matched to CI task structure were not evenly distributed 
across the brain, but were more prevalent in regions outside of the 
language-related circuitry identified with this task.

Electrodes that met all significance testing criteria were then clas-
sified based on their mean regressor weights. Electrodes possessing a 
single positive significant perception, planning and production weights 
were deemed unmixed perception, planning and production sites, 
respectively. Electrodes possessing a combination of significant posi-
tive perception, planning and production weights were categorized as 
‘mixed’. Significantly negative regressor weights did not affect elec-
trode classification.

Reduced GLM analyses
As we observed far fewer perception electrodes than planning elec-
trodes, we performed two additional GLM analyses to assess whether 
the overlapping structure of the perception and planning periods 
during early CI questions biased the GLM to detect planning-related 
activity at the expense of perception-related activity. To do so, we first 
performed the GLM analysis described above but omitted the plan-
ning regressor. For this reduced model, we held the D threshold and 
individual electrode D values constant to maintain consistent exclusion 
criteria with respect to the full model. We then compared the number 
of perception-related electrodes detected with the reduced model 
to that detected with the full model (Extended Data Fig. 3c). We then 
performed a parallel analysis with a reduced GLM that omitted the 
perception regressor. With these reduced models, we assessed (1) 
the number of planning electrodes (as detected with the full model) 
that gained a significant perception response when the planning 
regressor was omitted (Extended Data Fig. 3d), and (2) the number of 
perception electrodes (as detected with the full model) that gained 
a significant planning response when the perception regressor was 
omitted (Extended Data Fig. 3e). This analysis allowed us to assess 
whether the planning regressor also possessed explanatory value for 
perception-related activity and vice versa.

Analysis of CI question types
To assess whether planning-related electrodes displayed significantly 
elevated activity following CI in both ‘early’ and ‘late’ CI trials (Extended 
Data Fig. 1d) as well as in each of the three question categories (Extended 
Data Fig. 1e), we averaged high gamma signals aligned to CI for each 
of these categories. We then calculated the peak-to-trough amplitude 
of each mean response by subtracting the 25th percentile value of the 
z-scored high gamma activity during the 2 s before CI onset from the 
75th percentile value of the z-scored high gamma activity during the 
2 s following CI onset. We then performed the same procedure using 
random timepoints rather than CI onset times to generate parallel 
shuffled measures of the peak-to-trough response amplitudes for each 
condition. Data from all mixed and unmixed planning electrodes were 
pooled across participants to generate distributions of actual and shuf-
fled response amplitudes for each condition, and differences between 
these distributions were assessed using a signed-rank test.

CI clustering analyses in GLM weight space
To assess whether functionally relevant classes of electrodes (that is, 
perception, planning and production) formed distinct clusters in GLM 
weight space, k-medoids clustering was performed on all responsive 
electrodes pooled across all participants with the ‘kmedoids’ function 
in MATLAB. Clustering was specifically performed in three-dimensional 
GLM weight space (that is, perception, planning and production 
weights), and three clusters were assumed.

Using a simulation, we then assessed whether the observed cluster-
ing of functional electrode classes in GLM weight space could have 
resulted from subdividing continuously varying patterns of neural 
activity. To do this, we generated 253 simulated electrodes (that 
is, the number of observed responsive electrodes in our dataset) 
that were randomly assigned a perception weight, planning weight 
and production weight. The simulated weights for each regressor 
were generated from independent unimodal normal distributions 
whose means and standard deviations matched the observed values 
across responsive electrodes (perception, −0.119 ± 0.313 z; planning, 
0.245 ± 0.238 z; production, 0.220 ± 0.377 z). Simulated weights that 
surpassed the 5th percentile of observed significant weights for each 
regressor (perception, 0.229 z; planning, 0.164 z; production, 0.205 z) 
were considered ‘responsive’ in the model and subjected to further 
analysis. This method allowed us to match the range of regressor 
weights of our simulated responsive electrodes to that observed in 
the actual data while assuming that regressor weights reflect underly-
ing non-categorical, unimodal continua of neural activity as opposed 
to the discrete response profiles we hypothesized. Next, simulated 
responsive electrodes were classified as unmixed and mixed percep-
tion, planning and production sites in the same manner as was per-
formed for the actual data, and we quantified (1) the proportion of 
mixed electrodes and (2) the proportion of ‘misclustered’ unmixed 
electrodes. To identify misclustered electrodes, each simulated cluster 
first received an assignment as perception, planning or production; 
this assignment was determined such that the maximal number of 
simulated unmixed perception, planning and production electrodes 
fell into the perception, planning and production cluster, respectively, 
and each cluster contained at least one unmixed electrode whose type 
matched its assignment (that is, the planning cluster must contain at 
least one unmixed planning electrode). The proportion of misclus-
tered unmixed sites was then calculated by summing the number of 
simulated unmixed perception, planning and production electrodes 
falling outside of the perception, planning and production clusters, 
respectively, and dividing by the total number of simulated unmixed 
electrodes. This analysis was repeated over 100,000 iterations to 
generate empirical distributions of mixed and misclustered unmixed 
electrode proportions under the unimodal regime to compare against 
the observed results. Data from all iterations was considered unless the 
model failed to generate at least one unmixed electrode of each class.

Assessing the speech selectivity of planning sites
To quantify the specificity of planning responses, another GLM analysis 
was performed on the CR task data. This analysis was identical to the 
GLM performed for the CI task, except four planning regressors (CR1–
CR4) and three production regressors (CR1 (hand movements), CR2 
(non-speech orofacial movements), and CR3 and CR4 (speech)) were 
employed. As the temporal precision of each site was quantified with the 
CI task, no jittering analysis was performed. Also, as the CI in this task 
was longer in duration (for example, “open your mouth” versus a single 
word), the CI onset was defined as the onset of the planning regressor. 
This GLM analysis was performed on all unmixed planning and mixed 
planning–production electrodes (referred to as ‘planning electrodes’ 
in the context of the CR task). Mixed planning sites possessing a sig-
nificant positive perception GLM weight were not included to avoid 
biasing the analysis with unintended acoustic differences between 
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the four CR trial types. The mean planning regressor weight was then 
used as a metric for selectivity for each of the four CR response types.

We assessed the speech selectivity of planning electrodes within 
individual regions by calculating the proportion of planning electrodes 
in (1) the caudal IFG (that is, pars triangularis and pars opercularis),  
(2) the caudal MFG and (3) the precentral gyrus that displayed a sig-
nificant positive planning weight in each of the four CR tasks; the 
boundaries of these regions were defined according to the DKT atlas48,49 
(Extended Data Table 2, Supplementary Data 2). To assess the signifi-
cance of these proportions, we performed a resampling analysis where 
the planning weights observed across all planning electrodes for each 
CR task were shuffled and randomly assigned to the electrodes in each 
of these three regions. The proportion of shuffled significant positive 
responses were then calculated within each region and the process was 
repeated 100,000 times to determine the distribution of proportions 
that would be expected by chance; owing to differences in electrode 
coverage, this null distribution varied between regions. Any propor-
tions greater than the 97.5th percentile and lower than the 2.5th per-
centile of each region’s null distribution were therefore considered 
significantly different than chance.

Principal component analysis
Calculation of task-derived and conversation-derived PCs. To re-
duce the dimensionality of neural activity, PCA using singular value 
decomposition was performed on the unaveraged high gamma sig-
nals from all CI-task responsive electrodes (that is, each electrode is 
a variable with timepoints as observations). Specifically, we divided 
the task and conversation epochs of each participant’s dataset—which 
occurred sequentially during the experiments—and performed PCA 
(implemented with the ‘pca’ function in MATLAB) on the data from each 
period independently for all participants. The task period was defined 
as the epoch beginning 5 s before the onset of the first CI or CR trial 
and ending 5 s after the last CI or CR trial. In participants where the task 
began before the start of the electrophysiological recording or during a 
blanked artefactual period, the task period was defined to begin at the 
first unblanked sample. The conversation period was defined as the 
period beginning 5 s before the first experimenter turn onset and end-
ing 5 s after the last participant turn offset. In cases where conversation 
was still ongoing when the recording was terminated or during a final 
artefactual period, the conversation period was defined to end at the 
last unblanked sample. Finally, before performing PCA, each electrode’s 
high gamma signal was smoothed with a 250-ms mean boxcar filter 
and z-scored within the task and conversation epochs independently.

Clustering of task-responsive electrodes in PC coefficient space. 
To assess network organization in an unsupervised manner, we math-
ematically identified clusters of task-responsive electrodes for each 
participant possessing at least two unmixed electrodes of different 
classes (n = 6; Extended Data Table 1) using k-medoids clustering (im-
plemented with the ‘kmedoids’ function in MATLAB). To standardize 
this analysis across participants, clustering was specifically performed 
in three-dimensional PC coefficient space using the scalar coefficients 
(that is, loadings) of the first three PCs while assuming three clusters, 
as visual inspection revealed at least three main electrode clusters in 
all cases (Extended Data Fig. 7a–f). The coefficients of the first three 
PCs were used because (1) these PCs individually explained at least 5% 
of the variance for the task data in all participants and for the conver-
sation data in 7/8 participants while also cumulatively explaining at 
least one-third of the variance in all participants for both behaviours, 
(2) these PCs fell significantly above the linear decay phase in the scree 
plots for the task and conversation datasets in 7/8 and 6/8 participants, 
respectively, and (3) when all participant data were pooled, the first 
three PCs individually explained at least 5% of the variance and cumu-
latively explained at least one-third of the variance on average for both 
the task and conversation while also falling significantly above the linear 

decay phase (Extended Data Fig. 6c). Note that the linear decay phase 
was estimated for each participant using the 95% confidence interval 
of a line fit to the centre of the scree plot (that is, data from the middle 
50% of PCs centred at the half maximum PC) via the ‘fitlm’ function in 
MATLAB—thus allowing for the ‘elbow’ of the scree plot to be empirically 
defined. This process was performed across participants by similarly fit-
ting the pooled data from the middle 50% of the first 13 PCs (the number 
possessed by the participant with the fewest task-response electrodes, 
and consequently, PCs) from all participants (Extended Data Fig. 6c).

To assess whether the correlational structure among electrodes was 
stable between the task-based behaviour and natural conversation, we 
then identified electrode clusters in the conversation time period that 
were analogous to those observed during the task period. Specifically, 
analogous clusters were defined as the task cluster and conversation 
cluster that possessed the highest number of common electrodes. For 
all six participants, each task-related electrode cluster was analogous 
to a single, unique cluster in the conversation data such that 18 pairs 
of analogous clusters were identified (Extended Data Fig. 7). We then 
calculated the number of electrodes that ‘switched’ clusters between the 
task and conversation datasets (that is, electrodes not remaining within 
a pair of analogous clusters), and we determined whether the observed 
number of electrode switches for each participant and the total across 
participants were significantly less than expected by chance using a 
permutation test where the conversation cluster membership was shuf-
fled for each participant over 1,000 iterations (Extended Data Fig. 6d).

Functional categorization of electrode clusters. To determine 
whether electrode clusters in PC coefficient space corresponded to the 
perception, planning and production electrode classes defined using 
the CI task and the GLM, we examined the GLM-defined classification 
of electrodes within each cluster. To do this, we tallied the number of 
unmixed perception, planning and production electrodes (that is, elec-
trodes with a single significant positive GLM weight) in each cluster and 
functionally categorized clusters according to which electrode class 
was most numerous. Across the six participants, 17/18 analogous cluster 
pairs were thus defined as either a perception, planning or production 
cluster using this method (analogous clusters always received the same 
designation); one cluster pair received two categorizations (Extended 
Data Fig. 7d) and was not included in further analyses.

We next assessed whether the unsupervised clustering analysis suc-
cessfully recovered the functional classes of neural activity identified 
with the GLM by assessing the degree to which electrodes within a 
cluster in PC coefficient space exhibited GLM-defined neural activity 
congruent with the functional categorization of that cluster. Specifi-
cally, we calculated the percentage of electrodes across participants in 
conversation-related perception, planning and production clusters that 
displayed significant GLM-defined perception, planning or production 
activity, respectively. To determine whether the observed values across 
participants were higher than expected by chance, we assessed signifi-
cance using a permutation test where the GLM activity classes of each 
electrode were shuffled over 1,000 iterations (Extended Data Fig. 6e).

Functional categorization of PCs. To examine the neural activity 
related to speech perception, planning and production during conver-
sation, we assessed time-varying PC scores (that is, the linear combina-
tion of electrodes summed in time according to their PC coefficients) 
as a proxy for the aggregate activity of electrodes within perception-, 
planning- and production-related clusters. To first determine which 
PCs corresponded to each electrodes class, we examined the distri-
bution of PC coefficients displayed by electrodes within each cluster 
category for each participant. Specifically, we determined which of 
the first three PCs displayed the highest average coefficient value for 
electrodes in perception clusters, planning clusters and production 
clusters, and defined these PCs as perception, planning and produc-
tion PCs, respectively. In two participants where the vast majority of 



task-related responses were defined as planning (472, 100%; 510, 97.5%), 
we considered the PC with the highest average coefficient across all 
planning-related electrodes as the planning PC (Extended Data Fig. 7g, 
h). Finally, to avoid assessing PCs representing mixed response profiles, 
we did not include any clusters containing ≥50% mixed response elec-
trodes (for example, a planning cluster containing five unmixed plan-
ning and five mixed planning–production electrodes) in this analysis 
(n = 3/17 clusters; Extended Data Table 1, Extended Data Fig. 7a–f). 
Using this approach, we isolated two perception PCs, six planning PCs 
and five production PCs across eight participants in both the task and 
conversation datasets (Extended Data Fig. 7).

We then assessed the average response profiles of the perception, 
planning and production PCs by calculating (1) the mean planning 
and perception PC scores aligned to experimenter speech offset 
in the CI task and conversation, and (2) the average planning and 
production PC scores aligned to participant speech onset in the CI 
task and conversation. Periods of significantly elevated average PC 
activity (that is, PC scores) were identified using a permutation test 
where average responses for each PC were calculated when aligned to 
trial-number-matched random timepoints over 1,000 iterations; any 
time bins of the average response that fell above the 95th percentile 
value of the shuffled average responses were considered significant.

Lastly, we quantified PC activity with respect to unconstrained 
turn-taking behaviour in natural conversation by calculating the 
median z-scored PC score amplitude during all (1) experimenter turns, 
(2) intraturn gaps and (3) participant turns. Consistent with the previ-
ous analyses, participant turn onset was defined as 200 ms before the 
acoustic onset of participant speech to account for silent articulatory 
movements. Owing to this correction, any gaps less than 200 ms in 
duration were not considered for analysis. Finally, for all participants 
with multiple functionally categorized PCs (n = 4), the difference in 
median amplitude between PCs was assessed for significance using a 
signed-rank test (Extended Data Fig. 6g).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data used in these analyses are not publicly available owing to con-
cerns regarding patient privacy; however, the corresponding author 
will provide deidentified primary data upon request.

Code availability
The corresponding author will provide the MATLAB code used in this 
study for analysis of ECoG and behavioural data upon request.
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Extended Data Fig. 1 | Behaviour during the CI task. a, Description of 
subprocesses assumed to occur during the perception, planning, and 
production windows of the CI task. b, Histograms of reaction times (RT) in early 
and late CI trials for all participants. c, Median RT values for early and late CI 
trials for all participants. d, e, Histograms depicting the distribution of average 
peak-to-trough response amplitudes for all electrodes displaying 

planning-related responses when aligned to CI onset in early and late trials  
(d) and different CI question types (e); median values for each distribution are 
indicated. Observed data (in black) are compared with a null distribution (in 
grey) consisting of randomly chosen timepoints (Methods). f, Schematics 
displaying GLM regressor structure for an early (top) and a late (bottom) 
variant of an example CI task question.
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Extended Data Fig. 2 | GLM temporal jittering analysis. a, Full model R values 
for GLM fits of jittered high gamma activity from participant 436; each line 
represents data from an individual electrode. b, Example distribution of 
pooled D values with the fit of two Gaussians overlaid (black). The Gaussian 
distributions corresponding to well fit (blue) and poorly fit electrodes (red) as 
well as the 95th percentile of the D distribution for poorly fit electrodes (dashed 
line) are indicated. D values above the 95th percentile of the pooled distribution 

were deemed outliers (white bars) and not fitted. c, Table summarizing the 
number of electrodes rejected by the jittering analysis in each participant.  
d, Table reporting the anatomical locations of electrodes rejected by the 
jittering analysis and electrodes displaying significant activity in the CI task.  
e, Scatterplot depicting the proportion of rejected electrodes within a region 
as a function of the proportion of responsive electrodes in a region.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Analysis of neural activity in the CI task. a, Scatterplot 
depicting the distribution of all simulated task-responsive electrodes from the 
continuum model in three-dimensional GLM weight space; cluster 
membership indicated by greyscale colour. b, c, Distribution of simulated 
electrodes from the continuum model displaying responses in one window 
(i.e., unmixed) of the CI task (b) or multiple windows (c); response class 
indicated by colour in b and c and unmixed electrodes denoted by small black 
points in c. In b, simulated unmixed electrodes located outside the cluster 
primarily containing electrodes of the same type (i.e., ‘misclustered’) are 
indicated with an ‘X’. d, e, Histograms depicting the distribution of the 
proportion of misclustered electrodes responsive during a single task window 
(i.e., unmixed electrodes) (d), and the proportion of electrodes displaying 
more than one significant positive weight (i.e., mixed electrodes) (e) across 
100,000 iterations of the continuum model simulation. The median of each 
distribution as well as the values observed in the actual data (dashed line) are 

indicated. Gold arrows indicate the bin of each distribution containing the 
measurements corresponding to the example iteration depicted in panels p, r, 
and t of Fig. 1. f, Table reporting the number of electrodes displaying 
perception-related responses using either the full model or the reduced GLM 
lacking a planning regressor. g, h, Scatterplots depicting perception (g) and 
planning (h) GLM weights in the full model and reduced models lacking a 
planning regressor or perception regressor, respectively. Significant positive 
weights are denoted with filled points and nonsignificant or significant 
negative weights are denoted with unfilled points; the x-coordinates of each 
point are randomly jittered by 25% to better visualize filled versus unfilled 
status. No planning electrodes displayed significant perception responses in 
the reduced GLM lacking a planning regressor, and no perception electrodes 
displayed significant planning responses in the reduced GLM lacking a 
perception regressor.
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Extended Data Fig. 4 | Additional analyses of task-related activity changes. 
a, Table reporting the number of perception, planning, and production-related 
electrodes displaying significant positive and negative weights for each GLM 
regressor. b, Histogram depicting mean high gamma amplitude in the first  
500 ms of CI questions for all unmixed perception, planning, and production 
electrodes. c, d, Canonical cortical surfaces displaying electrodes with 

significant positive (coloured) or negative (black) GLM weights in the 
perception (c), production (d), and planning (e) windows of the CI task across 
all participants. Electrode diameter is scaled to the absolute magnitude of the 
GLM weight, and electrodes not displaying a significant weight for a given 
regressor are indicated with small white circles.



Extended Data Fig. 5 | Anatomical analysis of responses. a, Cortical 
reconstructions for all participants displaying the location of all electrodes; 
the size of each electrode depicts the actual size of its recording area on the 
cortical surface. GLM classification is indicated by electrode colour.  
b, Canonical cortical surfaces showing electrode locations from all 
participants as standard-sized white circles. c, Number of electrodes sampling 
each area of the canonical cortical surface (1 cm diameter spatial smoothing) 
after pooling electrodes from all participants. d, Proportion of electrodes 

displaying significant production-related responses in the CI task 
(1-cm-diameter spatial smoothing). e, Canonical cortical surfaces displaying 
electrodes with significant responses related to speech perception, 
production, and planning in patients with tumour (top) and patients with 
epilepsy (bottom) separately; electrode diameter scaled to GLM regressor 
weight. Electrodes not displaying a significant response for a process are 
depicted as small white circles.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Additional conversation-related analyses. a, Table 
reporting additional turn-taking behavioural measures for each participant.  
b, Histograms of gap durations (time between experimenter turn offset and 
participant turn onset) during unconstrained conversation for each 
participant; bins are centred on 100 ms increments with a width of 100 ms.  
c, Scree plots for the PCA analysis of high gamma signals in the task (left) and 
conversation (right) periods of the recordings; data from each participant are 
represented by thin lines and the average across participants is denoted with a 
thick black line. The 95% confidence interval of the linear decay phase across 
participants (Methods) is also indicated. d, The observed number of electrodes 
whose cluster membership was not stable (i.e., switched clusters) between the 

task and conversation with a histogram depicting the distribution of electrode 
cluster switches expected by chance. e, The observed percentage of electrodes 
in perception, planning, and production clusters (in conversation-derived PC 
coefficient space) displaying significant perception, planning, and production 
responses (per the GLM), respectively, with histograms depicting the 
percentages expected by chance for each cluster type. f, Canonical cortical 
surfaces displaying the locations of all electrodes in perception, planning, and 
production clusters across participants (n = 6) in the task (left) and 
conversation (right). g, Table reporting summary statistics for PC activity (i.e., 
time-varying PC score) during unconstrained conversation for each 
participant.



Article
436a

Plan.
Clust.

Plan.
Clust.

Prod. Prod. Plan.Plan.

Prod.
Clusts.

Prod.
Clusts.

-0.2

0

0.5

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

-0.3

0

0.4

PC1
PC2

PC3

-0.3

0

0.4

-0.3

0

0.4

PC1
PC2

PC3

0

1138
26

62
25
39135124

PC
1

PC
1

5745

Conversation

4658 0.2
6047

34
59

335
3244

18

-0.2

17

PC2

304316
0 31

29

-0.2

PC
3

0 0.2

0.4

Plan. Clust.

Prod.
Clust.2

Prod. 
Clust.1

Task

Prod. Clust.2

0
26

11

5139 251338
62

24

17

47

5
0.2

1830

33
432916

5734
46
45

3244

-0.2
31

PC2

605859

0

0

PC
3

0.2 0.4

0.4 Plan.
Clust.

Prod. 
Clust.1

mean

442b

PC
3

5657
55-0.2

582122

-0.2

5419
93

0

9481

2053
244

0

18134
248

0
78125

PC2

Conversation

0.4 229

0.1

14360

95

PC1

151

0.2

152
144

0.4 0.3

Plan.
Clust.

Perc.
Clust.

Prod.
Clust.

56
57215854

55
2253

19
18

93
20 248

94

244

81

229

134
78125
95

144152

60143151
-0.2

0

0

PC
3

0
PC2

Task

0.4

0.2
PC1
0.10.20.4

Plan.
Clust.

Perc.
Clust.

Prod.
Clust.

Plan.
Clust.

Perc.
Clust.

Perc.
Clust.

Plan.
Clust.

Prod.
Clust.

Prod.
Clust.

-0.2

0

0.4

-0.3

0

0.5

-0.1
0

0.6

PC1
PC2

PC3

-0.3

0

0.4

-0.3

0

0.4

0

0.5

PC1
PC2

PC3
Prod.Plan.Perc. Prod.Plan.Perc.

Perc.
Clust.Prod.

Clust.
4558

60
61

4659
47

0.1

3

Task

3963

PC1

32

51
-0.2 26

34
7

16
31

5610

0
35

21

38
-0.2

20
9

62

8 30

PC
3

33

29

PC2

40
22

2
50

23

37

24

52
25

36

0

0.4

0.20.2

Plan.
Clust.

Perc.
Clust.

Prod.
Clust.

4560
46585947

0.1

33
3461

23

38

32
20

2162

39

37

26

31

56

35

Conversation

3
637

PC1

29

5152
-0.2

30
9

25
22

10

24
0

40
8

50

PC
3

36

PC2
0

162

0.2

0.4

0.2

Prod.
Clust.

Plan.
Clust.

Perc.
Clust.

Perc.
Clust.

Plan.
Clust.

Prod.
Clust.

0

0.5

-0.3

0

0.3

-0.3

0

0.3

PC1
PC2

PC3

0

0.4

-0.3

0

0.3

-0.2

0

0.3

PC1
PC2

PC3

≥50% mixed≥50% mixed

≥50% mixed≥50% mixed

Prod. Prod.

463c

477d
Plan.-Prod. Clust.

Perc.
Clust.

Prod. Clust.
0

182

0

179
138

160202

PC2

132

194

142
15

134

PC1
0.40.2

100

183184

199198
101

191

Task

4

99

208
1

0.4

144
168

PC
3

210
1970 103

106105 102

-0.4

Plan.
-Prod.
Clust.

Perc.
Clust.

Prod.
Clust.

101 13819410099 179

13215

198
160

134142

199202

144
102

197
103

0

Conversation

208-0.2

106

PC
3

0

1830.4

105 41

191

210

184
182

168

PC1
0

PC2
0.20.4

Prod.
Clust.

Prod.
Clust.

Perc.
Clust.

Perc.
Clust.

>50% mixed>50% mixed

-0.3

0

0.4

-0.4

0

0.3

PC1
PC2

PC3

-0.3

0

0.4

0

0.5

PC1
PC2

PC3
Perc.Perc.

486e
Plan.
Clust.Prod.

Clust.1

Prod. Clust.2
-0.5

0

49
50

0.5

PC
3

57

51

58

33
4134

0PC2

52

Task

28 64
21
14

PC1

8

0.4

48

0.20.30.4

Plan.
Clust.

Prod. Clust.1

Prod. 
Clust.2

-0.5

0

33

49

0.5

41

57PC
3

34

50
58

0

51
PC2

28

Conversation

64
21

52

488

14

0.4

PC1
0.20.30.4

Prod.
Clust.

Prod.
Clust.

Plan.
Clust.

Plan.
Clust.

-0.2

0

0.5

-0.4

0

0.5

PC1
PC2

PC3

-0.3

0

0.5

-0.4

0

0.6

PC1
PC2

PC3
Prod. Plan. Prod. Plan.

494f
Plan. Clust.2

Plan. Clust.1

Prod. 
Clust.

0
215205

127

112

10710692

128

12542
61

121

919012375

120
168

153210200

PC1

86204

Task

11972
212

100
201

159 85
130

12268

117
37

105116
2

169191 67180
134

104
21422418

89

101213
174
144143

17 11852
34

-0.2

1028733 10388510

PC2

PC
3

0.2-0.1 0

0.4

0.2

Plan.
Clust.2

Plan.
Clust.1

Prod. Clust. 0

107
92125751069190

128
205

61
42

123

215

204

PC1

159210 180

2
130

Conversation

37

168

127

191169200153
86 224

214112
68

212

89

174143
72

213
201

85

144
17

134
3352 341867121

119120117
51

-0.2

105
101

122100116104
1180

PC2
0.2

87102103PC
3

88

-0.2 0

0.4

0.2

Prod.
Clust.

Prod.
Clust.

Plan.
Clust.

Plan.
Clust.

-0.2

0

0.4

-0.2

0

0.3

PC1
PC2

PC3

-0.2

0

0.4

-0.1

0

0.3

PC1
PC2

PC3
Prod. Prod.Plan. Plan.

472g

-0.4

0

0.5
Task

PC1
PC2

PC3
-0.4

0

0.5
Conversation

PC1
PC2

PC3
Plan.Plan.

510h
ConversationTask

-0.4

0

0.4

PC1
PC2

PC3
-0.4

0

0.4

PC1
PC2

PC3
Plan.Plan.

GLM Classes
Perception
Planning

Production
Perc.+Prod.
Perc.+Plan.
Plan.+Prod.

All

Extended Data Fig. 7 | PCA results for individual participants. a–f, For 6 
participants possessing sufficient numbers of electrodes belonging to 
multiple GLM classes (Methods): scatterplots depicting electrode 
distributions in PC coefficient space in the task and conversation periods (top 
row). Bar graphs depicting the PC coefficients for all electrodes in perception, 
planning, or production clusters from the PCA performed on task data and 
conversation data (bottom rows). Participant number given at top of each 

panel. g, h, For 2 participants possessing mainly planning electrodes (Methods, 
Extended Data Table 1): bar graphs depicting the PC coefficients for all 
planning-related electrodes from the PCA performed on task data and 
conversation data. In the bar graphs, the functional categorization of PCs is 
indicated by filled bars coloured either green (perception), blue (planning), or 
red (production). Any clusters rejected due to a high proportion (50%) of mixed 
electrodes are indicated with grey filled bars.



Extended Data Table 1 | Participant information
Code Age Sex Type Handedness Wada Testing Pathology/Diagnosis Tumor location/seizure loci Tasks Completed Data Rejected Notes

510 54 M Acute RH

Glioblastoma
(tumour) Left inferior frontal gyrusLH language 

dominant

CI questions; CR1, CR2, 
CR3a, CR4b; conversation

Anaplastic
Oligodendroglioma 
(tumour)

Left inferior frontal gyrusN/A

CI questions; CR1, CR2, 
CR3a, CR4b; conversation

CI questions; CR1, CR2, 
CR3a, CR4b; conversation

Vascular
malformation, focal
cortical dysplasia 
TIIIc (tumour)

Left temporal poleN/A

494 Acute 70+

486 Acute RH

M

M53

30 LH language 
dominant

Hippocampal 
sclerosis (epilepsy) Left hippocampus

N/A Glioblastoma
(tumour) Left parahippocampal gyrus

477 Chronic 80+

472 Acute RHM

F

32

24 LH language 
dominant epilepsy/mild gliosis Left parietal seizure focus

463 Acute ambidextrousM65

35 LH language 
dominant epilepsy Multifocal onset

Grade II
oligodendroglioma 
(tumour)

Left middle frontal gyrusN/A CI questions; conversation

CI questions; CR1, CR2, 
CR3a, CR3c, CR4a, CR4b; 

conversation

CI questions; CR1, CR2, 
CR3a, CR4b; conversation

N/A

N/A

Excluded from CR analysis as only 2 pluralization trials 
(CR4) were completed correctly; planning and perception 

electrode clusters rejected from PC functional analysis 
(≥50% mixed electrodes)

442 Chronic 70+

436 Acute RHF58

F

CI questions; CR1, CR2, 
CR3a, CR4b; conversation

CI questions; CR1, CR2, 
CR3a, CR3b, CR4a, CR4b; 

conversation

Excluded from PCA clustering analysis (n = 0 unmixed 
perception and n = 1 unmixed production electrodes).

N/A

CR and CI 
trials not 

interleaved.

N/A

N/A

N/A

N/A

N/A

N/A

Production electrode cluster rejected from PC functional 
analysis (≥50% mixed electrodes); mixed planning-

production electrode cluster rejected from PC functional 
analysis

Excluded from PCA clustering analysis (n = 0 unmixed 
perception and n = 0 unmixed production electrodes)

N/A

N/A
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Extended Data Table 2 | DKT parcellation of all CI task-responsive electrodes

DKT Label # Perception Sites # Production Sites # Planning Sites All **
Left superior frontal gyrus 0 0 1 11
Left rostral middle frontal gyrus* 0 3 20 91
Left caudal middle frontal gyrus* 0 5 19 37
Left pars opercularis* 4 14 43 109
Left pars triangularis* 3 6 27 89
Left pars orbitalis 0 1 1 14
Left precentral gyrus* 1 53 29 128
Left postcentral gyrus 1 16 3 46
Left superior parietal lobule 0 1 0 12
Left supramarginal gyrus 0 4 2 17
Left inferior parietal lobule 1 0 0 20
Left superior temporal gyrus* 11 5 14 103
Left middle temporal gyrus 0 6 1 53
Left inferior temporal gyrus 2 2 0 12
Left transverse temporal gyrus 9 5 0 12
Left lateral occipital cortex 2 0 0 11
Left insular cortex 2 0 0 4
Total 36 121 160 769

*Regions that combine to include 152 of 160 (95.0%) of all planning electrodes (inferior and middle frontal gyri, superior temporal gyrus and precentral gyrus). 
**Total does not include electrodes that are located outside of the anatomical structures listed in this table.
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