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Strong Coupling of Nonlinear Electronic and Biological Oscillators:
Reaching the “Amplitude Death’” Regime
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Interaction between an electronic and a biological circuit has been investigated for a pair of
electrically connected nonlinear oscillators, with a spontaneously oscillating olivary neuron as the
single-cell biological element. By varying the coupling strength between the oscillators, we observe a
range of behaviors predicted by model calculations, including a reversible low-energy dissipation
“amplitude death” where the oscillations in the coupled system cease entirely.
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The creation of bidirectional communication interfa-
ces between man-made and biological systems is being
sought by a broad spectrum of approaches. In case of
neural circuits, these range from attempts to develop
systems level ‘““neuroports” at the brain-machine inter-
face to research at the cellular level of individual neurons.
The study of these interfaces aims to understand the
functional intricacies of neurons as biological informa-
tion processors, but also to explore future approaches to
electronic computers.

Here we report on experiment and theory of a particu-
lar neural-electronic hybrid interface forming a system of
coupled nonlinear oscillators. Coupled nonlinear oscilla-
tors are frequently studied in electrical engineering,
physics, and computational biology, and applications are
found, e.g., in superconducting junctions, phase-locked
laser arrays, and relativistic magnetrons. Paired nonlin-
ear oscillators show qualitatively different behavior de-
pending on the coupling strength. In the weak coupling
regime, oscillators either synchronize at a common fre-
quency or behave independently. In the strong coupling
regime, the oscillators can quench each other by dynami-
cally pulling each other away from the oscillatory state to
enter a nondissipative, zero-amplitude standstill, i.e.,
“amplitude death.” In electronic circuits, recent work
has demonstrated the existence of spontaneous amplitude
death [1] as one striking illustration of the diverse pos-
sible phenomena predicted for such interactive systems
[2]. In neuroscience, the electronic-neural cell hybrid
systems have been used to study collective behavior of
neural oscillators, such as central pattern generators [3].
In this work, we have been able to create an active inter-
face between an electronic and neural oscillator circuit in
the laboratory that dramatically reaches the amplitude
death regime. As far as we know, this is the first demon-
stration of amplitude death in a biological system.
Possible impact on neuroscience derives from intense
current interest in developing ways to control neuropa-
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thological behaviors with electronic devices that can de-
liver stimuli at the precise time and place, and with the
appropriate pattern, to prevent or terminate deleterious
neural activity.

Our biological circuit element was a neuron from the
inferior olivary (IO) nucleus of the rat brain. IO cells
exhibit spontaneous oscillations in their membrane po-
tential, with typical amplitudes of 0.1-15 mV in the range
of 1-10 Hz. Neurons of the IO are the source of the
climbing fibers to the cerebellar cortex, and they strongly
excite Purkinje cells. This circuit is believed to be a
critical feature of precise timing and learning in cerebel-
lar motor circuits. Studies of the IO have revealed many
details of their physiological mechanisms [4]. These neu-
rons are coupled to one another by electrical synapses
which enable synchrony of membrane potential oscilla-
tions and action potentials across groups of cells in the 10
[5,6]. However, experiments show that the oscillations
themselves arise from the intrinsic membrane properties
of individual cells [5], although electrical coupling may
also play a role [7]. To simulate the nonlinear oscillatory
behavior of 10 neurons, we employed a variation of the
model of Manor et al. [8] which uses Hodgkin-Huxley
formalism [9]. It is known that a low-threshold calcium
current is necessary for the oscillations in the IO which,
together with a passive leakage current, leads to the
following equations of motion:

av 1

E = - C_m(lion - Iapp)r (1a)
dh  ho(V)—h

= 1b
ai - W) (10)

where V is the membrane potential, C,, = 1 uF/cm? is
the specific capacitance of the membrane, I,,, is the
applied current of external input into the cell, and [;,, is
the sum of a low-threshold calcium current /; and a
leakage current I; [10]. The inactivation function A(V, 1)
is related to the membrane ionic conductances [9] with A,
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and 7, corresponding to the steady-state (membrane po-
tential and conductance-dependent) inactivation and in-
activation time constants, respectively. The relevant
parameters have been measured on the 10 cells in rats
[8]. We have used numerical techniques to solve Eq. (1) for
a single, isolated IO neuron to obtain its bifurcation
diagram and to verify the existence of a well-defined
region of limit cycle oscillations [8,11].

For the electronic oscillator (ELO), we chose a parallel
RLC circuit with a nonlinear resistive element [1]. The
circuit design [Fig. 1(a)] and the individual component
values were chosen so as to produce limit cycle oscilla-
tions variable over the range of 0.5-20 Hz, with ampli-
tudes in the range of 1.0-50 mV. The nonlinear element, a
version of the so-called Chua diode [12], was constructed
using diodes, operational amplifiers, and resistors, with a
designed differential negative resistance tailored by using
the circuit analysis software SPICE. The required large
inductance ( ~ 1000 Henry) was implemented by using
generalized impedance converters. Our limit cycle oscil-
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FIG. 1 (color online). (a) The electronic oscillator circuit with
R, = R, = 10 KQ, R; = 35K, R, = 100 KQ, C = 100 nF,
L = 250000 H. (b) Schematic of the experimental arrange-
ment. The box A is an adjustable-gain amplifier to match the
amplitudes of oscillations in electronic (typically 10-20 mV)
and in biological (typically 5-15 mV) oscillators. Boxes K;
and K, are also adjustable-gain amplifiers to determine differ-
ent coupling coefficients.
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lator obeys the following equation of motion:

S, p o

x:y, y:

where x = V() is the voltage across the circuit, y =
dV/dt, f(V) the current component flowing through the
nonlinear resistor, and wj = (LC)™"' . We used numerical
techniques to solve Eq. (2) to verify that our ELO, too,
had stable limit cycle behavior.

By combining Egs. (1) and (2), we explored the phase
space for the electrically coupled IO and electronic non-
linear oscillators. The equations for the coupled system
can be written as

dv 1

E T C_m(lion + KI[A(V - Vrest) - x])’ (3a)

dh _ he(V) = h

T o
iey, (30)

where A is gain to match the amplitudes of oscillations in
both systems for a fair coupling. The salient features of
these simulations are first summarized in the bifurcation
diagram of Fig. 2. To accommodate for the physically
very different energy content of the neuron and the circuit
oscillator, their electronic coupling was adjusted through
two independent ‘‘potentiometers,” labeled K| and K, . In
the bifurcation diagram, the axes are the normalized
coupling coefficients K in units of 10 MQ/Rg; and K,
in 5 kQ/Rg,. In the calculations, the frequencies of os-
cillations were 1.3 and 1.9 Hz for the 10 and ELO,
respectively, as in the experiment. Given a range of dis-
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FIG. 2. Calculated bifurcation diagram for the coupled non-
linear olivary neuron-electronic oscillator pair, as a function of
the coupling coefficients K| and K,.
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TABLE 1. Experimental coupling coefficients.

R 10 to circuit Ry : Circuit to IO

Amplitude death 400 Q 1 MQ
In-phase oscillations 5kQ 70 MQ)
Out-of-phase oscillations 5 k() 100 MQ

tributed oscillation frequencies and coupling strength
between the two oscillators, the theory predicts the ex-
istence of a phase space for the coupled system that is
sharply divided into three regions as a function of K; and
K,: (i) two independent oscillators (K; = 0, K, = 0),
(i1) synchronized oscillators (K; = 0.1, K, = 1 for in-
phase and K; = 0.03, K, =1 for out-of-phase cases),
and (iii) the case of ‘“‘amplitude death” (K; = 10, K, =
12). Note that the amplitude death is exclusively a con-
sequence of the nonlinear nature of the coupled oscillator
problem in a strongly interactive regime and differs fun-
damentally from simple linear superposition phenomena
such as interference.

Experimentally we constructed the coupled nonlinear
oscillator circuit by connecting an 10 neuron to our ELO
through an electrical pathway, facilitated by a micro-
electrode connection to the neuron. Microelectrode inter-
faces have been utilized by neuroscientists to study the
oscillatory properties of the IO neurons in detail, includ-
ing work by Yarom and co-workers, who connected linear
analog electrical circuits to IO neurons to investigate the
relationship between intercellular coupling and synchro-
nous membrane oscillations [13]. Our aim was to test the
above predictions that arise from the theory of coupled
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nonlinear oscillator circuits. The bidirectional electrical
connection to the olivary neuron was made through a
whole-cell patch micropipette, connected to current in—
voltage out amplifier-recording unit [14]. Slices from the
IO from a rat’s brain were prepared with a standard
protocol [15]. With this arrangement, we studied the
interaction between the two oscillators over a wide range
of coupling conditions in steady state. Table I summarizes
the values of the experimental coupling constants in each
of the three regimes of Fig. 2. The key results of a
successful run are summarized in Fig. 3. Figure 3(a)
shows the oscillators acting independently in the weakly
coupled regime (the IO also shows a single action poten-
tial spike, occasional phenomena not connected with
issues studied here). With increasing coupling strength,
the oscillators become phase locked, or synchronized at
1.7 Hz [Fig. 3(b)], but with a phase relationship which is
either in phase or out of phase depending on the coupling
parameters [Fig. 3(b), left vs right panels]. Finally, as
shown in Fig. 3(c), further increasing the coupling
strength results in amplitude death. That is, the active
biological oscillator and the electronic circuit have the
ability to extinguish their oscillations through their mu-
tual interaction. As the coupling coefficients were next
decreased in value, the oscillations recommenced; that is,
the state of amplitude death was fully reversible. The
results of the detailed computational solution to the
coupled Egs. (1) and (2), employing the technique devel-
oped by Ermentrout [2], are compared to the experiment
in Figs. 3(d)-3(f), displaying close agreement.

We briefly comment on the physics of our coupled
hybrid oscillator circuit in terms of the stability, noise,
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FIG. 4. Computed return from amplitude death in the pres-
ence and the absence of a 1 mV rms noise, respectively.

and dynamics of the quiescent amplitude death regime.
All circuits are noisy at a finite temperature; for neural
cells the primary noise generators are thermal noise of the
membrane resistance, noise due to stochastic channel
openings and closings of voltage-gated ion channels,
and noise due to synaptic inputs from other neurons
[16]. We highlight here the issue of the recovery of the
system from the quiescent case, induced by the presence
of a “white” noise spectrum applied as a Gaussian cur-
rent input with zero mean in the term [, of Eq. (1b). This
results in a rms voltage noise of the membrane potential
of approximately 1 mV. Figure 4 shows a comparison of
the recovery from amplitude death of the system in the
presence of noise and without noise. In principle, a noise-
free system is not expected to recover from amplitude
death; however, in this case it is hard to find the exact
equilibrium point in simulations unless the computa-
tional time is extended to an impractical length.
Nonetheless, it is clear from Fig. 4 that the presence of
noise significantly accelerates the recovery rate, on the
time scale of the average oscillation frequency. Details of
the stochastic problem will be addressed elsewhere.

The combined experimental and theoretical results
presented above represent a demonstration of strongly
interactive, real-time, electronic-neural cell interface,
where electronic and neural cells communicate beyond
the perturbative regime. The demonstrated ability of the
coupled system to cease its spontaneous oscillations in a
reversible manner, as well as the synchronization of os-
cillations, represents a potentially powerful general con-
cept where biological and man-made circuits can be
envisioned to interact as a hybrid unit, with predesigned
functional performance for the total “closed-loop” sys-
tem. For neuroscience applications, the phenomenon of
amplitude death suggests a dynamical strategy for rapidly
and effectively terminating electronically a wide range of
undesirable oscillatory behaviors, such as the control of
abnormal tremors. Extension of this work envisions the
study of the collective interaction between small groups
of olivary neurons and electronic oscillators, with each
subsystem thus representing a small nonlinear network of
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elements. By adapting techniques of modern microelec-
tronics or nanoelectronics, it also seems feasible to com-
pact these and related experiments to the chip scale and to
consider compact integrated biological-microelectronic
circuits for future applications to hybrid signal processing
and computational systems that extract their usefulness
from the complementary character of each subsystem.
Research supported by the BiolnfoMicro Program at
the U.S. Defense Advanced Research Projects Agency.
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