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New methods for localizing and manipulating neuronal dynamics
in behaving animals
Michale S Fee1 and Michael A Long2,3
Where are the ‘prime movers’ that control behavior? Which

circuits in the brain control the order in which individual motor

gestures of a learned behavior are generated, and the speed at

which they progress? Here we describe two techniques

recently applied to localizing and characterizing the circuitry

underlying the generation of vocal sequences in the songbird.

The first utilizes small, localized, temperature changes in the

brain to perturb the speed of neural dynamics. The second

utilizes intracellular manipulation of membrane potential in the

freely behaving animal to perturb the dynamics within a single

neuron. Both of these techniques are broadly applicable in

behaving animals to test hypotheses about the biophysical and

circuit dynamics that allow neural circuits to march from one

state to the next.
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Nearly everything humans learn to do requires the execu-

tion of a complex sequence of motor gestures produced in

a precise temporal order and with precise timing. Much is

now known about how neurons in motor areas spike in

relation to individual motor gestures, or even sequences

of gestures [1–6], for example directional tuning of

neurons in primate motor cortex [7,8] or sequence selec-

tivity of neurons in supplementary motor cortex [9,10].

These are examples of how neuroscientists have begun to

decipher how neurons in the brain fire in relation to — or

code for — complex motor behaviors. But where are the

‘prime movers’ that drive complex learned behaviors —

those circuits that generate the temporal structure of

learned behaviors? What controls the order in which states
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of activity arise and the speed at which they progress? We

need to go beyond a description of how neurons fire in

relation to behavior to address the circuit and biophysical

dynamics that underlie how one state of a neural system is

transformed into the next state in time.

In some simple nervous systems, it has been possible to

identify small circuits of neurons containing the bio-

physical dynamics that generate the temporal pattern

of a behavior. For example, Stent et al. [11��] were able

to classify subsets of neurons in the segmental ganglia of

the leech as being part of an ‘oscillator network’ because

manipulation of their membrane potential altered the

timing of the rhythmic swimming behavior. In contrast,

manipulating other – ‘follower’ – neurons had no effect on

timing because their activity is simply driven by the

oscillator network. Here we say that the dynamics that

underlie the swimming behavior are located entirely

within the oscillator network, even though the follower

neurons also exhibit time-dependent activity necessary

for swimming.

Addressing these questions for more complex behaviors

in large brains with many more neurons is more difficult.

Lesions or pharmacological inactivation can tell us

whether a brain region is necessary for the expression

of a particular behavior. Electrophysiological recordings

can tell us whether activity in a brain area is correlated

with a behavior. Electrical stimulation can tell us whether

activation of a region (or the axons passing into or through

that region) can disrupt or elicit a behavior [1,12], but

none of these approaches can reveal whether the bio-

physical dynamics within a region are actively involved in

timing a behavior.

Here we describe two techniques that have recently been

applied to the question of the origin of biophysical

dynamics in neural circuits: localized brain cooling and

the intracellular manipulation of neuron membrane

potential. Using these techniques, hypotheses can be

tested about the dynamical origin of temporal structure

in neural circuits that could not be tested using other

techniques. We will focus on the application of these

techniques to examine the origin of song timing in a

songbird, an excellent model organism in which to

address questions about the neuronal dynamics under-

lying complex learned sequences in the vertebrate brain.

The song is mediated by a discrete set of motor nuclei,

known as the song motor pathway, that are necessary for

the production of adult song (Figure 1a) [13–17]. One
pulating neuronal dynamics in behaving animals, Curr Opin Neurobiol (2011), doi:10.1016/

Current Opinion in Neurobiology 2011, 21:1–8

http://dx.doi.org/10.1016/j.conb.2011.06.010
http://dx.doi.org/10.1016/j.conb.2011.06.010
mailto:fee@MIT.EDU
http://dx.doi.org/10.1016/j.conb.2011.06.010


2 Networks, Circuits and Computation

CONEUR-952; NO. OF PAGES 8

Figure 1
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Sequential activity in the songbird motor pathway. (a) Block diagram of brain regions involved in the production of song. Abbreviations: Uva, nucleus

uvaeformis; HVC, used as a proper name; RA, robust nucleus of the archistriatum; MN, brainstem motor nucleus. (b) Raster plot of the spiking patterns

of eight RA-projecting HVC neurons recorded during singing. Each row of tick marks shows spikes generated during one rendition of the song; roughly

ten renditions are shown for each neuron. The neurons were identified by antidromic stimulation from RA. The song spectrogram is shown at top. Note

that each RA-projecting HVC neuron bursts reliably at a single precise time in the song.
nucleus, known as HVC (used as a proper name), is a

cortical premotor brain region containing neurons that

generate a single burst of spikes at a particular moment in

the song. As a population, these neurons form a sparse

sequential representation of time, or temporal order, in

the song [18] (Figure 1b).
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Using temperature to localize neuronal
dynamics
Where are the dynamics that underlie the generation of

sparse sequential bursts in HVC (Figure 2a)? One possib-

ility is that the dynamics are contained entirely within

HVC (Figure 2b). For example, one could envision a
pulating neuronal dynamics in behaving animals, Curr Opin Neurobiol (2011), doi:10.1016/
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chain of activity in which each neuron is activated by a

previous group of neurons and in turn activates the next

group. An alternative possibility is that the bursting in

HVC is directly driven by synaptic inputs from upstream

brain areas, such as the thalamic nucleus Uva [16,17,19].

In the latter case, the timing of HVC activity could be

controlled entirely by circuitry upstream of HVC

(Figure 2c).

These two models give very different predictions for what

would happen if we could slow down the biophysical

processes in HVC. Imagine we could inject some sort of

‘neuronal molasses’ into HVC that does not inactivate the

circuit, but just makes all neuronal processes move a little

more slowly. If the circuitry and biophysical processes

that control song timing reside entirely within HVC, then

the time it takes each neuron to activate the next neuron

in this sequence should increase. There should therefore

be fewer bursts per unit time, and the song should slow

down (Figure 2b).

The prediction is quite different if the burst sequence in

HVC is driven by timing inputs from upstream of HVC.
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Figure 3
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Slowing HVC could increase the duration of HVC bursts

and would increase the time it takes HVC neurons to

respond to this upstream input, but this increased latency

would be the same for every HVC neuron. Thus, there

would be the same number of bursts per unit time, and

the song would not slow down (Figure 2c).

Temperature change is a useful manipulation to dis-

tinguish hypotheses like these about the role of specific

circuits in timing of a behavior. Because it affects many

neuronal processes such as synaptic transmission, axonal

conduction velocity, and spiking properties [20–24],

temperature change can be used very generally, even

without detailed knowledge of the underlying circuit or

neuronal properties. Although large decreases in

temperature (DT > 308C) can result in inactivation

[25,26], slight cooling (DT < 88C) can slow circuit

activity. Indeed, there are several examples now in which

small temperature changes in simple central pattern

generators have been shown to produce substantial

changes in oscillatory cycle time [27,28��,29] but other-

wise leave the circuit and behavioral function intact

[28��,30�,31,32].
pulating neuronal dynamics in behaving animals, Curr Opin Neurobiol (2011), doi:10.1016/
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 finch brain highlighting the motor pathway and showing the placement of

nges at a variety of depths under the surface of the thermoelectric probe,
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. (c) Cooling HVC produces a slowing of the song across all timescales.
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Temperature changes can be applied locally to dis-

tinguish the influence of even nearby brain areas, such

as nucleus RA and HVC in the song motor pathway.

The combination of thermal diffusion and local per-

fusion of the brain with a warm blood results in a

localized effect of brain cooling. In birds, and probably

mammals, the temperature change falls off from a

cooling surface with a length constant of about 1.0–
1.5 mm [33]. Local cooling can be applied at the surface

of the brain (for example, neocortex), or to structures

deep within the brain using insulated probes. Using this

approach, we developed a miniature device using small

solid-state electronic heat pumps to provide local cool-

ing of specific brain regions in the free-behaving, sing-

ing zebra finches [33,34] (Figure 3a,b). We found that

bilateral cooling of HVC led to a nearly uniform slow-

ing, or stretching, of the song by about 3% per degree of

temperature change (Figure 3c). This stretch of the

song occurred at all timescales: detailed acoustic struc-

ture within song syllables, the interval between syllable

onsets, and the interval between song motifs. This

finding provides strong evidence against models in

which the timing of song vocalizations, on any time-

scale, is controlled by circuitry outside of HVC, and

suggests that HVC may function as the ‘high vocal

clock’ of song motor sequences.

Local temperature changes can be especially powerful

when used to distinguish the roles of multiple interact-

ing brain areas. If cooling one of these areas produces a

slowing of the behavior while another does not, then

strong conclusions can be drawn about the lack of

involvement of the area in which cooling has no effect.

For example, while cooling HVC causes a slowing of

song structure, temperature changes in RA, the structure

in the motor pathway to which HVC projects, did not

result in a measurable change in song timing [33]. Taken

together, these results suggest that biophysical

dynamics within RA play little role in the control of

song timing.

Observing an effect on timing from cooling a brain area

may provide some evidence that timing originates in that

area, however one must be careful to rule out other

possible interpretations. For example, consider a situation

in which the dynamics in one circuit (area B) are strongly

sensitive to the amount of tonic ‘activation’ or perhaps

neuromodulatory input from an upstream area (area A).

Because cooling can substantially affect the firing rate of

tonically active neurons (see Ref [33] for an example),

then cooling upstream area A could affect the temporal

patterns in the downstream circuits, even though bio-

physical dynamics in area A are not directly involved in

generating temporal patterns of activity. As with any

technique, combining cooling with other approaches,

such as electrophysiology, will be important to dissect

neural circuit dynamics.
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Manipulating intracellular membrane potential
during behavior to test circuit models
Once HVC was localized as a principal locus of timing in

the song pathway, it was then possible to address the

detailed circuit mechanisms that underlie the sparse

sequential activation of neurons in this area. Two major

classes of models have been proposed to explain

sequence generation within neural circuits. Groups of

neurons may be linked together with specific local con-

nections such that activity can propagate, wave-like,

through a synaptically connected ‘chain’ of neurons

(Figure 4a, chain model) [35–39]. Alternatively,

sequences could be generated in the absence of overt

feed-forward connections between neurons. For example,

a population of neurons could exhibit a gradual and global

ramping-up of membrane potential such that the most

excitable neurons reach threshold first, while the least

excitable neurons reach threshold later (Figure 4b, ramp-

to-threshold model). Such global modulation of mem-

brane potential is thought to underlie hippocampal theta

sequences during theta activity [40] and perhaps replay

sequences during sharp-wave activity [41,42]. In these

models, the diversity of neuronal excitability (which

controls the time at which each neuron spikes in the

sequence) could be a function of intrinsic cellular excit-

ability [43,44,45�], or of recurrent network excitation [41].

Slow subthreshold inhibitory dynamics on the timescale

of song syllables (�100 ms) has been observed in HVC in
vitro [46], raising the possibility that such a ramp-to-

threshold circuit could control burst timing in HVC. Note

that any ‘ramping’ mechanism produced by biophysical

dynamics within HVC would also likely be slowed by HVC

cooling, so that the ramp-to-threshold model would predict

a slowing of the song sequence by HVC cooling. Thus, the

ramp-to-threshold model and the chain model described

above would be very difficult to distinguish based on

evidence from spike data or cooling experiments.

However, these two models yield very different predic-

tions for the pattern of subthreshold activity that one

would observe during singing. Specifically, in the ramp-

to-threshold model, the membrane potential of each

HVC neuron should exhibit a slow depolarizing ramp

in the hundreds of milliseconds before burst onset,

whereas in the chain model, each burst should be pre-

ceded by a fast depolarizing input from previously active

neurons. Also, intracellular injection of hyperpolarizing

current would be expected to make the recorded neuron

reach threshold later, delaying the onset of the burst.

Likewise, injection of depolarizing current would be

expected to advance the time of the burst.

In order to test these predictions of these two circuit

models, we adopted an approach recently introduced for

intracellular recordings in the freely moving rat [47�,48] to

carry out intracellular recordings in unrestrained, singing
pulating neuronal dynamics in behaving animals, Curr Opin Neurobiol (2011), doi:10.1016/
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Testing circuit dynamics during natural behaviors with intracellular

current injection and recording. (a) In the chain model of sequence

generation, neurons activate each other sequentially through sparse

feed-forward synaptic connections. This model predicts that intracellular

www.sciencedirect.com 
zebra finches. We developed a small (1.6 g) microdrive

and miniature headstage preamplifier for use with sharp

glass microelectrodes (Figure 4c). With this device we

were able to record synaptic inputs as well as spiking

outputs from antidromically identified premotor neurons

in HVC (Figure 4d). The results were clearly consistent

with the predictions of the chain model — in no cases did

HVC neurons exhibit a ramping-up of membrane poten-

tial in the hundreds of milliseconds before burst inset.

Indeed, bursts were preceded by a rapidly rising depolar-

izing potential within 5–10 ms before burst onset, con-

sistent with the idea that neurons are being driven by

input from a previous ‘link’ in a chain of neurons. Further-

more, hyperpolarizing or depolarizing current injection

did not change the time of the burst onset by more than a

few milliseconds (Figure 4e), inconsistent with the idea

that the time at which a neuron bursts is controlled by a

slow ramping up to spike threshold.

Summary and conclusions
Here we describe two approaches recently applied to

localizing and characterizing the neuronal dynamics under-

lying the generation of complex behavioral sequences in

behaving animals. While we have framed these ideas in

terms of the circuits underlying behavior, the question of

neuronal dynamics is pervasive in all aspects of brain

function that involve time-dependent computations [49].

The tools we describe here should be broadly applicable to

the study of brain dynamics underlying temporal selectiv-

ity [50�], changes in attention [51�], motor planning [52],

and the generation of theta rhythm and phase precession

important for hippocampal function [41,53��,54]. Other

potential applications include examining the rich dynamics

underlying the control of intracortical information flow

[55�] and spontaneous brain states [56�], or even localizing

the dynamics underlying pathological states of brain

activity such as Parkinsonian tremor [57�].

The tools we review here are complementary to recent

approaches allowing optical control of activity in specific

sets of neurons [58–66] or the targeting of ligand-gated

channels to genetically specified sets of neurons in a
pulating neuronal dynamics in behaving animals, Curr Opin Neurobiol (2011), doi:10.1016/

current injection should have little effect on burst timing. Strong

hyperpolarizing currents (red) might suppress spiking, but there should

be a subthreshold depolarizing potential at the time of the burst. (b) In

the ramp-to-threshold model, neurons are activated by a global ramp of

excitation. The time at which each neuron spikes is set by its intrinsic

excitability. This model predicts that burst timing should be delayed by

hyperpolarizing current (red) and advanced by depolarizing current

injection (green). (c) Motorized microdrive for intracellular recording and

current injection in unrestrained, freely behaving animals. (d) Intracellular

recording of a single RA-projecting HVC neuron during singing. The

membrane potential is aligned to the song motif. Traces are shown at

low and high voltage gains (top and bottom, respectively). Note the

absence of slow membrane potential ramping before burst onset. (e)

Consistent with the chain model, burst timing was unaffected by steady

current injection. Note the depolarizing potential at the time of the burst

in the most hyperpolarized condition (bottom).
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circuit [67–70,71��]. These approaches will primarily be

useful for studying neural circuits in which neuronal

populations can be targeted with genetic tools, and about

which enough is understood to formulate hypotheses

about the function of specific circuit elements. In con-

trast, the broad effectiveness of localized brain cooling

across neuronal subtypes and biophysical processes

within a circuit make this approach perfectly suited for

the initial stage of cracking circuit dynamics—localizing

within a set of interconnected brain regions where the

neuronal dynamics are that underlie a behavior or a

computation. Intracellular recording and current injection

are similarly broadly applicable to address detailed ques-

tions about the dynamics of neuronal circuits in behaving

animals.
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